

A096660


Primes p such that the p1 digits of the ternary (base 3) expansion of k/p (for k=1,2,3,...,p1) fit into the kth row of a magic square grid of order p1.


2



223, 593, 811, 6113, 15319, 22123, 22409, 22817, 24859, 32801, 40013, 43853, 47599, 48259, 51329, 56383, 64553, 64579, 77813, 96401, 109169, 109937, 135607, 191899, 229507, 254623, 281609, 379157, 496963, 526963, 530753, 700781, 1090373
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

W. S. Andrews, Magic Squares and Cubes, pp. 176 Dover NY 1960.
J. Heleen, Journal of Recreational Mathematics, 30(1) 19992000 pp. 723 Soln. to Prob. 2394. Magic Reciprocals
M. J. Zerger, Journal of Recreational Mathematics, 30(2) 19992000 pp. 158160 Soln. to Prob. 2420. Only 19?


LINKS

Table of n, a(n) for n=1..33.
H. Heinz Order 18 based on 1/19
Simon Whitechapel Reciprocal Arrangements [Internet Archive Wayback Machine]


CROSSREFS

Cf. A072359, A096339.
Sequence in context: A118818 A142437 A142773 * A094459 A108819 A158226
Adjacent sequences: A096657 A096658 A096659 * A096661 A096662 A096663


KEYWORD

nonn,base


AUTHOR

Simon Whitechapel (aladgyma(AT)yahoo.com), Jul 02 2004


EXTENSIONS

Corrected and extended by William Rex Marshall, Aug 18 2005
Corrected by T. D. Noe, Nov 15 2006


STATUS

approved



