login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A186184
Expansion of 1/(1 - x*A002296(x)).
2
1, 1, 2, 10, 89, 1002, 12592, 168805, 2363241, 34138860, 505042286, 7612594936, 116492572621, 1804984878387, 28260999959595, 446441276449715, 7106718529937710, 113886198966545724
OFFSET
0,3
LINKS
Vaclav Kotesovec, Recurrence of order 7
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = Sum_{k=1..n} (k/(6*n-5*k))*binomial(7*n-6*k-1, n-k), n > 0.
MAPLE
A186184 := proc(n)
if n = 0 then
1;
else
add( k/(6*n-5*k)*binomial(7*n-6*k-1, n-k), k=1..n) ;
end if;
end proc:
seq(A186184(n), n=0..20) ; # R. J. Mathar, Feb 26 2011
MATHEMATICA
Join[{1}, Table[Sum[k/(6n-5k) Binomial[7n-6k-1, n-k], {k, n}], {n, 30}]] (* Harvey P. Dale, Aug 29 2012 *)
CROSSREFS
Sequence in context: A270923 A096658 A346371 * A326554 A055779 A363425
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 14 2011
STATUS
approved