|
|
A186183
|
|
Expansion of 1/(1-x*A002295(x)).
|
|
0
|
|
|
1, 1, 2, 9, 68, 646, 6857, 77695, 919642, 11233858, 140544189, 1791614714, 23187320736, 303861373679, 4023883823059, 53762917329659, 723854999871943, 9811154512175468, 133762940465746744, 1833187046654598058, 25239961633188882896
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n} k/(5*n-4*k) * binomial(6*n-5*k-1,n-k) if n>0; a(0)=1.
|
|
MAPLE
|
a:= n-> `if` (n=0, 1, add (k/(5*n-4*k) *binomial (6*n-5*k-1, n-k), k=1..n)):
seq (a(n), n=0..30);
|
|
PROG
|
(PARI) a(n)=max(1, sum(k=1, n, k/(5*n-4*k)*binomial(6*n-5*k-1, n-k)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|