login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186183
Expansion of 1/(1-x*A002295(x)).
2
1, 1, 2, 9, 68, 646, 6857, 77695, 919642, 11233858, 140544189, 1791614714, 23187320736, 303861373679, 4023883823059, 53762917329659, 723854999871943, 9811154512175468, 133762940465746744, 1833187046654598058, 25239961633188882896
OFFSET
0,3
LINKS
Vaclav Kotesovec, Recurrence of order 6
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = Sum_{k=1..n} k/(5*n-4*k) * binomial(6*n-5*k-1,n-k) if n>0; a(0)=1.
a(n) ~ 2^(6*n+4) * 3^(6*n + 9/2) / (51136801 * sqrt(Pi) * n^(3/2) * 5^(5*n - 7/2)). - Vaclav Kotesovec, Sep 22 2024
MAPLE
a:= n-> `if` (n=0, 1, add (k/(5*n-4*k) *binomial (6*n-5*k-1, n-k), k=1..n)):
seq (a(n), n=0..30);
PROG
(PARI) a(n)=max(1, sum(k=1, n, k/(5*n-4*k)*binomial(6*n-5*k-1, n-k)))
CROSSREFS
Sequence in context: A336588 A322612 A364337 * A295239 A120020 A200248
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 14 2011
STATUS
approved