login
A060350
The sum over all subsets S of [n] of the squares of the number of permutations with descent set = S.
15
1, 1, 2, 10, 88, 1216, 24176, 654424, 23136128, 1035227008, 57186502912, 3822411268864, 304059285928960, 28385946491599360, 3073391215118186496, 381995951933025287680, 54020316243835807039488, 8624091617045072628121600, 1543536018434416280510332928
OFFSET
0,3
COMMENTS
a(n) = number of ordered pairs of permutations of [n] such that the first has an ascent wherever the second has a descent and vice versa. For example, the pair of permutations (1243, 4123) does not qualify because they have a common ascent starting at location 2, and a(2) = 2 counts (12, 21), (21, 12). - David Callan, Sep 15 2013
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..250 (terms 0..150 from Alois P. Heinz)
FORMULA
a(n) = A137782(2n) / A000984(n).
a(n) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^2. - Alois P. Heinz, Sep 15 2020
a(n) ~ c * d^n * n!^2, where d = 0.552406011965766199179395470003589240257321... and c = 1.6412834540969426814342654061364... - Vaclav Kotesovec, Sep 18 2020
EXAMPLE
a(1)=1^2; a(2)=1^2+1^2; a(3)=1^2+2^2+2^2+1^2; a(4)=1^2+3^2+5^2+3^2+3^2+5^2+3^2+1^2.
MAPLE
ct := proc(k) option remember; local i, out, n; if k=0 then RETURN(1); fi; n := floor(evalf(log[2](k)))+1; if k=2^n or k=2^(n+1)-1 then RETURN(1); fi; out := 0; for i from 1 to n do if irem(iquo(k, 2^(i-1)), 2) = 1 and irem(iquo(2*k, 2^(i-1)), 2) =0 then out := out+(n-1)!/(i-1)!/(n-i)!* ct(floor(irem(k, 2^(i-1))+2^(i-2)))*ct(iquo(k, 2^i)); fi; od; out; end: seq(add(ct(i)^2, i=floor(2^(n-1))..2^n-1), n=0..15);
# second Maple program:
b:= proc(u, o, h) option remember; `if`(u+o=0, 1,
add(add(b(u-j, o+j-1, h+i-1), i=1..u+o-h), j=1..u)+
add(add(b(u+j-1, o-j, h-i), i=1..h), j=1..o))
end:
a:= n-> b(0, n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 02 2015
MATHEMATICA
b[u_, o_, h_] := b[u, o, h] = If[u + o == 0, 1, Sum[Sum[b[u - j, o + j - 1, h + i - 1], {i, 1, u + o - h}], {j, 1, u}] + Sum[Sum[b[u + j - 1, o - j, h - i], {i, 1, h}], {j, 1, o}]]; a[n_] := b[0, n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
CROSSREFS
Row sums of A259465.
Column k=2 of A334622.
Sequence in context: A144002 A355098 A209884 * A270923 A096658 A346371
KEYWORD
nonn
AUTHOR
Mike Zabrocki, Mar 31 2001
EXTENSIONS
Two more terms from Max Alekseyev, May 06 2009
a(0) prepended, a(18) from Alois P. Heinz, Jul 02 2015
STATUS
approved