login
A262372
Number T(n,k) of ordered pairs (p,q) of permutations of [n] with equal up-down signatures and p(1)=q(1)=k if n>0; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
13
1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 0, 10, 8, 8, 10, 0, 88, 68, 64, 68, 88, 0, 1216, 952, 852, 852, 952, 1216, 0, 24176, 19312, 17008, 16328, 17008, 19312, 24176, 0, 654424, 533544, 467696, 438496, 438496, 467696, 533544, 654424
OFFSET
0,8
LINKS
EXAMPLE
T(4,1) = 10: (1234,1234), (1243,1243), (1243,1342), (1324,1324), (1324,1423), (1342,1243), (1342,1342), (1423,1324), (1423,1423), (1432,1432).
T(4,2) = 8: (2134,2134), (2143,2143), (2314,2314), (2314,2413), (2341,2341), (2413,2314), (2413,2413), (2431,2431).
T(4,3) = 8: (3124,3124), (3142,3142), (3142,3241), (3214,3214), (3241,3142), (3241,3241), (3412,3412), (3421,3421).
T(4,4) = 10: (4123,4123), (4132,4132), (4132,4231), (4213,4213), (4213,4312), (4231,4132), (4231,4231), (4312,4213), (4312,4312), (4321,4321).
Triangle T(n,k) begins:
1
0, 1;
0, 1, 1;
0, 2, 2, 2;
0, 10, 8, 8, 10;
0, 88, 68, 64, 68, 88;
0, 1216, 952, 852, 852, 952, 1216;
0, 24176, 19312, 17008, 16328, 17008, 19312, 24176;
MAPLE
b:= proc(u, o, h) option remember; `if`(u+o=0, 1,
add(add(b(u-j, o+j-1, h+i-1), i=1..u+o-h), j=1..u)+
add(add(b(u+j-1, o-j, h-i), i=1..h), j=1..o))
end:
T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), b(k-1, n-k, n-k)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[u_, o_, h_] := b[u, o, h] = If[u + o == 0, 1,
Sum[b[u - j, o + j - 1, h + i - 1], {i, 1, u + o - h}, {j, 1, u}] +
Sum[b[u + j - 1, o - j, h - i], {i, 1, h}, {j, 1, o}]];
T[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[k - 1, n - k, n - k]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2019, after Alois P. Heinz *)
CROSSREFS
Main diaginal and column k=1 give A060350(n-1) for n>0.
Row sums give A262234.
T(2n,n) gives A262379.
Sequence in context: A307520 A265648 A181230 * A292520 A131079 A334889
KEYWORD
nonn,look,tabl
AUTHOR
Alois P. Heinz, Sep 20 2015
STATUS
approved