login
A262369
A(n,k) is the n-th prime whose decimal expansion begins with the decimal expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
14
11, 2, 13, 3, 23, 17, 41, 31, 29, 19, 5, 43, 37, 211, 101, 61, 53, 47, 307, 223, 103, 7, 67, 59, 401, 311, 227, 107, 83, 71, 601, 503, 409, 313, 229, 109, 97, 89, 73, 607, 509, 419, 317, 233, 113, 101, 907, 809, 79, 613, 521, 421, 331, 239, 127
OFFSET
1,1
EXAMPLE
Square array A(n,k) begins:
: 11, 2, 3, 41, 5, 61, 7, 83, ...
: 13, 23, 31, 43, 53, 67, 71, 89, ...
: 17, 29, 37, 47, 59, 601, 73, 809, ...
: 19, 211, 307, 401, 503, 607, 79, 811, ...
: 101, 223, 311, 409, 509, 613, 701, 821, ...
: 103, 227, 313, 419, 521, 617, 709, 823, ...
: 107, 229, 317, 421, 523, 619, 719, 827, ...
: 109, 233, 331, 431, 541, 631, 727, 829, ...
MAPLE
u:= (h, t)-> select(isprime, [seq(h*10^t+k, k=0..10^t-1)]):
A:= proc(n, k) local l, p;
l:= proc() [] end; p:= proc() -1 end;
while nops(l(k))<n do p(k):= p(k)+1;
l(k):= [l(k)[], u(k, p(k))[]]
od: l(k)[n]
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
u[h_, t_] := Select[Table[h*10^t + k, {k, 0, 10^t - 1}], PrimeQ];
A[n_, k_] := Module[{l, p}, l[_] = {}; p[_] = -1; While[Length[l[k]] < n, p[k] = p[k]+1; l[k] = Join[l[k], u[k, p[k]]]]; l[k][[n]]];
Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
CROSSREFS
Row n=1 gives A018800.
Main diagonal gives A077345.
Sequence in context: A318927 A267320 A303785 * A092260 A370004 A318926
KEYWORD
nonn,base,tabl,look
AUTHOR
Alois P. Heinz, Sep 20 2015
STATUS
approved