login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A(n,k) is the n-th prime whose decimal expansion begins with the decimal expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
14

%I #22 Nov 11 2020 19:08:00

%S 11,2,13,3,23,17,41,31,29,19,5,43,37,211,101,61,53,47,307,223,103,7,

%T 67,59,401,311,227,107,83,71,601,503,409,313,229,109,97,89,73,607,509,

%U 419,317,233,113,101,907,809,79,613,521,421,331,239,127

%N A(n,k) is the n-th prime whose decimal expansion begins with the decimal expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.

%H Alois P. Heinz, <a href="/A262369/b262369.txt">Antidiagonals n = 1..200, flattened</a>

%H <a href="/index/Pri#piden">Index entries for primes involving decimal expansion of n</a>

%e Square array A(n,k) begins:

%e : 11, 2, 3, 41, 5, 61, 7, 83, ...

%e : 13, 23, 31, 43, 53, 67, 71, 89, ...

%e : 17, 29, 37, 47, 59, 601, 73, 809, ...

%e : 19, 211, 307, 401, 503, 607, 79, 811, ...

%e : 101, 223, 311, 409, 509, 613, 701, 821, ...

%e : 103, 227, 313, 419, 521, 617, 709, 823, ...

%e : 107, 229, 317, 421, 523, 619, 719, 827, ...

%e : 109, 233, 331, 431, 541, 631, 727, 829, ...

%p u:= (h, t)-> select(isprime, [seq(h*10^t+k, k=0..10^t-1)]):

%p A:= proc(n, k) local l, p;

%p l:= proc() [] end; p:= proc() -1 end;

%p while nops(l(k))<n do p(k):= p(k)+1;

%p l(k):= [l(k)[], u(k, p(k))[]]

%p od: l(k)[n]

%p end:

%p seq(seq(A(n, 1+d-n), n=1..d), d=1..12);

%t u[h_, t_] := Select[Table[h*10^t + k, {k, 0, 10^t - 1}], PrimeQ];

%t A[n_, k_] := Module[{l, p}, l[_] = {}; p[_] = -1; While[Length[l[k]] < n, p[k] = p[k]+1; l[k] = Join[l[k], u[k, p[k]]]]; l[k][[n]]];

%t Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* _Jean-François Alcover_, Dec 06 2019, from Maple *)

%Y Columns k=1-9 give: A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715.

%Y Row n=1 gives A018800.

%Y Main diagonal gives A077345.

%Y Cf. A077344, A262365.

%K nonn,base,tabl,look

%O 1,1

%A _Alois P. Heinz_, Sep 20 2015