login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045708
Primes with first digit 2.
24
2, 23, 29, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221
OFFSET
1,1
LINKS
FORMULA
See A045707 for comments on density of these sequences.
MATHEMATICA
Select[Table[Prime[n], {n, 3000}], First[IntegerDigits[#]]==2 &] (* Vincenzo Librandi, Aug 08 2014 *)
PROG
(Haskell)
a045708 n = a045708_list !! (n-1)
a045708_list = filter ((== 2) . a000030) a000040_list
-- Reinhard Zumkeller, Mar 16 2012
(Magma) [p: p in PrimesUpTo(2300) | Intseq(p)[#Intseq(p)] eq 2]; // Vincenzo Librandi, Aug 08 2014
(Python)
from sympy import isprime
def agen(limit=float('inf')):
yield 2
digits, adder = 1, 20
while True:
for i in range(1, 10**digits, 2):
test = adder + i
if test > limit: return
if isprime(test): yield test
digits, adder = digits+1, adder*10
agento = lambda lim: agen(limit=lim)
print(list(agento(2222))) # Michael S. Branicky, Feb 23 2021
(Python)
from sympy import primepi
def A045708(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x+primepi(min(((m:=10**(l:=len(str(x))-1))<<1)-1, x))-primepi(min(3*m-1, x))+sum(primepi(((m:=10**i)<<1)-1)-primepi(3*m-1) for i in range(l))
return bisection(f, n, n) # Chai Wah Wu, Dec 07 2024
CROSSREFS
Cf. A000040.
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509
Cf. A000030, subsequence of A208272.
Column k=2 of A262369.
Sequence in context: A062653 A208272 A306086 * A090150 A106102 A053232
KEYWORD
nonn,base,easy,changed
AUTHOR
EXTENSIONS
More terms from Erich Friedman.
Offset fixed by Reinhard Zumkeller, Mar 15 2012
STATUS
approved