login
A045715
Primes with first digit 9.
21
97, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257
OFFSET
1,1
LINKS
MATHEMATICA
Flatten[Table[Prime[Range[PrimePi[9 * 10^n] + 1, PrimePi[10^(n + 1)]]], {n, 3}]] (* Alonso del Arte, Jul 19 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(10^4) | Intseq(p)[#Intseq(p)] eq 9]; // Bruno Berselli, Jul 19 2014
(Magma) [p: p in PrimesInInterval(9*10^n, 10^(n+1)), n in [0..3]]; // Bruno Berselli, Aug 08 2014
(Python)
from itertools import chain, count, islice
def A045715_gen(): # generator of terms
return chain.from_iterable(primerange(9*(m:=10**l), 10*m) for l in count(0))
A045715_list = list(islice(A045715_gen(), 40)) # Chai Wah Wu, Dec 08 2024
(Python)
from sympy import primepi
def A045715(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x+primepi(min(9*(m:=10**(l:=len(str(x))-1))-1, x))-primepi(min(10*m-1, x))+sum(primepi(9*(m:=10**i)-1)-primepi(10*m-1) for i in range(l))
return bisection(f, n, n) # Chai Wah Wu, Dec 08 2024
CROSSREFS
For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509.
Column k=9 of A262369.
Sequence in context: A216380 A133535 A321051 * A113891 A090157 A162674
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman.
STATUS
approved