login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334622
A(n,k) is the sum of the k-th powers of the descent set statistics for permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
7
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 8, 1, 1, 2, 10, 24, 16, 1, 1, 2, 18, 88, 120, 32, 1, 1, 2, 34, 360, 1216, 720, 64, 1, 1, 2, 66, 1576, 14460, 24176, 5040, 128, 1, 1, 2, 130, 7224, 190216, 994680, 654424, 40320, 256, 1, 1, 2, 258, 34168, 2675100, 46479536, 109021500, 23136128, 362880, 512
OFFSET
0,6
LINKS
R. Ehrenborg and A. Happ, On the powers of the descent set statistic, arXiv:1709.00778 [math.CO], 2017.
FORMULA
A(n,k) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^k.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
4, 6, 10, 18, 34, 66, 130, ...
8, 24, 88, 360, 1576, 7224, 34168, ...
16, 120, 1216, 14460, 190216, 2675100, 39333016, ...
32, 720, 24176, 994680, 46479536, 2368873800, 128235838496, ...
...
MAPLE
b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1, t+1)*x^floor(2^(t-1)), j=1..u)+
add(b(u+j-1, o-j, t+1), j=1..o)))
end:
A:= (n, k)-> (p-> add(coeff(p, x, i)^k, i=0..degree(p)))(b(n, 0$2)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1,
Sum[b[u - j, o + j - 1, t + 1] x^Floor[2^(t - 1)], {j, 1, u}] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]]];
A[n_, k_] := Function[p, Sum[Coefficient[p, x, i]^k, {i, 0, Exponent[p, x]}]][b[n, 0, 0]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
CROSSREFS
Columns k=0-4 give: A011782, A000142, A060350, A291902, A291903.
Rows n=0+1, 2-3 give: A000012, A007395(k+1), A052548(k+1).
Main diagonal gives A334623.
Sequence in context: A373778 A110971 A136788 * A136450 A355011 A131054
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 09 2020
STATUS
approved