login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136450 Matrix based on counter variant Hankel matrix: (smaller at central antidiagonal) h(i,j) = If[i + j - 1 > n, 0, n + 1 - (i + j - 1) Characteristic polynomials as a triangle of coefficients. 0
1, 1, -1, -1, -2, 1, -1, 2, 4, -1, 1, 2, -7, -6, 1, 1, -2, -10, 12, 9, -1, -1, -2, 13, 18, -26, -12, 1, -1, 2, 16, -24, -52, 40, 16, -1, 1, 2, -19, -30, 87, 86, -70, -20, 1, 1, -2, -22, 36, 131, -150, -190, 100, 25, -1, -1, -2, 25, 42, -184, -232, 403, 294, -155, -30, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

These polynomials grow slower than their Hankel counterparts.

Row sums are {1, 0, -2, 4, -9, 9, -9, -4, 38, -72, 161}.

LINKS

Table of n, a(n) for n=1..66.

FORMULA

h(i,j)=If[i + j - 1 > n, 0, n + 1 - (i + j - 1): i,j<=n.

EXAMPLE

{1},

{1, -1},

{-1, -2, 1},

{-1, 2, 4, -1},

{1, 2, -7, -6, 1},

{1, -2, -10,12, 9, -1},

{-1, -2, 13, 18, -26, -12, 1},

{-1, 2, 16, -24, -52, 40, 16, -1},

{1, 2, -19, -30, 87, 86, -70, -20, 1},

{1, -2, -22, 36,131, -150, -190, 100, 25, -1},

{-1, -2, 25, 42, -184, -232,403, 294, -155, -30, 1}

MATHEMATICA

H[n_] := Table[Table[If[i + j - 1 > n, 0, n + 1 - (i + j - 1)], {i, 1, n}], {j, 1, n}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[H[n], x], x], {n, 1, 10}]]; Flatten[a]

CROSSREFS

Sequence in context: A110971 A136788 A334622 * A131054 A267998 A265005

Adjacent sequences:  A136447 A136448 A136449 * A136451 A136452 A136453

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, Mar 19 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:41 EDT 2021. Contains 344009 sequences. (Running on oeis4.)