login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096654
Denominators of self-convergents to 1/(e-2).
9
1, 2, 8, 38, 222, 1522, 11986, 106542, 1054766, 11506538, 137119578, 1772006854, 24681524038, 368577425634, 5874202721042, 99515904921182, 1785757627196766, 33835407673201882, 675016383080377546, 14143200407398386678, 310507536216973671158, 7128173005328786885714
OFFSET
0,2
COMMENTS
The self-continued fraction of r>0 is here introduced as the sequence (b(0), b(1), b(2), ...) defined as follows: put r(0)=r, b(0)=[r(0)] and for n>=1, put r(n)=b(n-1)/(r(n-1)-b(n-1)) and b(n)=[r(n)]. This differs from simple continued fraction, for which r(n)=1/(r(n-1)-b(n-1)). Now r=lim(p(n)/q(n)), where p(0)=b(1), q(0)=1, p(1)=b(0)(b(1)+1), q(1)=b(1) and for n>=2, p(n)=b(n)*p(n-1)+b(n-1)*p(n-2), q(n)=b(n)*q(n-1)+b(n-1)*q(n-2); p(0),p(1),... are the numerators of the self-convergents to r; q(0),q(1),... are the denominators of the self-convergents to r. Thus A096654 is given by a(n)=(n+1)*a(n-1)+n*a(n-2), a(0)=1, a(1)=2.
Number of increasing runs of odd length in all permutations of [n+1]. Example: a(2) = 8 because we have (123), 13(2), (3)12, (2)13, 23(1), (3)(2)(1) (the runs of odd length are shown between parentheses). - Emeric Deutsch, Aug 29 2004
FORMULA
a(n) = (n+1)*a(n-1) + n*a(n-2), with a(0)=1, a(1)=2. - Alex Ratushnyak, Aug 05 2012
E.g.f.: (3-x-2*(1+x)*exp(-x))/(1-x)^3. - Emeric Deutsch, Aug 29 2004
From Gary Detlefs, Apr 12 2010: (Start)
a(n) = A055596(n+1) + A055596(n+2).
a(n) = (n+1)!+(n+2)! -2*( A000166(n+1) + A000166(n+2)).
a(n) = (n+1)! - 2*floor(((n+1)!+1)/e) + (n+2)!-2*floor(((n+2)!+1)/e). (End)
a(n) = ((n+3)!-2*floor(((n+3)!+1)/e))/(n+2). - Gary Detlefs, Jul 11 2010 [corrected by Gary Detlefs, Oct 26 2020]
a(n) = Sum_{k=1..n+1} A097591(n+1,k). - Alois P. Heinz, Jul 03 2019
EXAMPLE
a(2)=q(2)=3*2+2*1=8, a(3)=q(3)=4*8+3*2=38. The convergents p(0)/q(0) to p(4)/q(4) are 1/1, 3/2, 11/8, 53/38, 309/222.
MAPLE
G:=(3-x-2*(1+x)*exp(-x))/(1-x)^3: Gser:=series(G, x=0, 22): 1, seq(n!*coeff(Gser, x^n), n=1..21);
MATHEMATICA
With[{g = (3 - x - 2*(1 + x)*Exp[-x])/(1 - x)^3}, CoefficientList[Series[g, {x, 0, 21}], x]*Table[k!, {k, 0, 21}]] (* Shenghui Yang, Oct 15 2024 *)
PROG
(Python)
prpr = 1
prev = 2
for n in range(2, 77):
print(prpr, end=', ')
curr = (n+1)*prev + n*prpr
prpr = prev
prev = curr
# Alex Ratushnyak, Aug 05 2012
(PARI) x='x+O('x^66); Vec(serlaplace((3-x-2*(1+x)*exp(-x))/(1-x)^3)) /* Joerg Arndt, Aug 06 2012 */
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Jul 01 2004
EXTENSIONS
More terms from Emeric Deutsch, Aug 29 2004
STATUS
approved