The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097591 Triangle read by rows: T(n,k) is the number of permutations of [n] with exactly k increasing runs of odd length. 7
 1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 6, 0, 17, 0, 1, 0, 70, 0, 49, 0, 1, 90, 0, 500, 0, 129, 0, 1, 0, 1890, 0, 2828, 0, 321, 0, 1, 2520, 0, 23100, 0, 13930, 0, 769, 0, 1, 0, 83160, 0, 215292, 0, 62634, 0, 1793, 0, 1, 113400, 0, 1549800, 0, 1697430, 0, 264072, 0, 4097, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA E.g.f.: t^2/[1-tx-(1-t^2)exp(-tx)]. Sum_{k=1..n} k * T(n,k) = A096654(n-1) for n > 0. - Alois P. Heinz, Jul 03 2019 EXAMPLE Triangle starts: 1; 0, 1; 1, 0, 1; 0, 5, 0, 1; 6, 0, 17, 0, 1; 0, 70, 0, 49, 0, 1; 90, 0, 500, 0, 129, 0, 1; 0, 1890, 0, 2828, 0, 321, 0, 1; 2520, 0, 23100, 0, 13930, 0, 769, 0, 1; ... Row n has n+1 entries. Example: T(3,1) = 5 because we have (123), 13(2), (2)13, 23(1) and (3)12 (the runs of odd length are shown between parentheses). MAPLE G:=t^2/(1-t*x-(1-t^2)*exp(-t*x)): Gser:=simplify(series(G, x=0, 12)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(expand(n!*coeff(Gser, x^n))) od: seq(seq(coeff(t*P[n], t^k), k=1..n+1), n=0..11); # second Maple program: b:= proc(u, o, t) option remember; `if`(u+o=0, x^t, expand( add(b(u+j-1, o-j, irem(t+1, 2)), j=1..o)+ add(b(u-j, o+j-1, 1)*x^t, j=1..u))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0, 1)): seq(T(n), n=0..12); # Alois P. Heinz, Nov 19 2013 MATHEMATICA b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, x^t, Expand[Sum[b[u+j-1, o-j, Mod[t+1, 2]], {j, 1, o}] + Sum[b[u-j, o+j-1, 1]*x^t, {j, 1, u}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *) CROSSREFS Bisections of columns k=0-1 give: A000680, A302910. Row sums give A000142. T(n+1,n-1) gives A000337. T(4n,2n) gives A308962. Cf. A096654, A097592. Sequence in context: A326185 A293508 A083861 * A318299 A164652 A127557 Adjacent sequences: A097588 A097589 A097590 * A097592 A097593 A097594 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Aug 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 11:41 EDT 2024. Contains 373677 sequences. (Running on oeis4.)