The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097593 Number of increasing runs of even length in all permutations of [n]. 2
 0, 0, 1, 4, 22, 138, 998, 8174, 74898, 759634, 8451862, 102381222, 1341503546, 18907621562, 285259758366, 4587192222958, 78327809126818, 1415429225667234, 26987142531214118, 541434621007942454, 11402270678456333322 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA E.g.f.: (4*(exp(-x)-1)+4*x-x^2)/(2*(1-x)^2). a(n) = (2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2) - (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Nov 19 2012 a(n) ~ n!*n*(4*exp(-1)-1)/2. - Vaclav Kotesovec, Nov 19 2012 a(n) = Sum_{k=1..floor(n/2)} k * A097592(n,k). - Alois P. Heinz, Jul 04 2019 EXAMPLE Example: a(3)=4 because we have 123,(13)2,2(13),(23)1,3(12),321 (runs of even length shown between parentheses). MAPLE G:=(4*(exp(-x)-1)+4*x-x^2)/2/(1-x)^2: Gser:=series(G, x=0, 25): 0, seq(n!*coeff(Gser, x^n), n=1..24); MATHEMATICA Table[n!*SeriesCoefficient[(4*(E^(-x)-1)+4*x-x^2)/(2*(1-x)^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 19 2012 *) PROG (PARI) x='x+O('x^66); concat([0, 0], Vec(serlaplace((4*(exp(-x)-1)+4*x-x^2)/(2*(1-x)^2)))) \\ Joerg Arndt, May 11 2013 CROSSREFS Cf. A097592. Sequence in context: A091638 A142984 A283055 * A188686 A025756 A200731 Adjacent sequences:  A097590 A097591 A097592 * A097594 A097595 A097596 KEYWORD nonn AUTHOR Emeric Deutsch, Aug 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 17:18 EDT 2021. Contains 345388 sequences. (Running on oeis4.)