login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097594
a(n) = (a(n-1) mod a(n-2)) + a(n-2), a(0) = 3, a(1) = 2.
2
2, 5, 3, 8, 5, 13, 8, 21, 13, 34, 21, 55, 34, 89, 55, 144, 89, 233, 144, 377, 233, 610, 377, 987, 610, 1597, 987, 2584, 1597, 4181, 2584, 6765, 4181, 10946, 6765, 17711, 10946, 28657, 17711, 46368, 28657, 75025, 46368, 121393, 75025, 196418, 121393, 317811, 196418, 514229, 317811, 832040, 514229
OFFSET
0,1
FORMULA
a(2n) = Fibonacci(n+4), a(2n+1) = Fibonacci(n+3).
a(n) = A053602(n+6).
a(n) = abs( A051792(n+11) ).
G.f.: (2 + 5*x + x^2 + 3*x^3)/(1 - x^2 - x^4). - G. C. Greubel, Dec 06 2022
MATHEMATICA
LinearRecurrence[{0, 1, 0, 1}, {2, 5, 3, 8}, 60] (* G. C. Greubel, Dec 06 2022 *)
PROG
(Magma) [Fibonacci(3 +Floor(n/2) +2*(n mod 2)): n in [0..60]]; // G. C. Greubel, Dec 06 2022
(SageMath) [fibonacci(3 +(n//2) + 2*(n%2)) for n in range(61)] # G. C. Greubel, Dec 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerald McGarvey, Aug 29 2004
STATUS
approved