login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302910
Determinant of n X n matrix whose main diagonal consists of the first n 6-gonal numbers and all other elements are 1's.
6
1, 5, 70, 1890, 83160, 5405400, 486486000, 57891834000, 8799558768000, 1663116607152000, 382516819644960000, 105192125402364000000, 34082248630365936000000, 12849007733647957872000000, 5576469356403213716448000000, 2760352331419590789641760000000
OFFSET
1,2
FORMULA
a(n) = (n + 1/2) * (2*n-1)! / (3 * 2^(n-2)). - Vaclav Kotesovec, Apr 16 2018
EXAMPLE
The matrix begins:
1 1 1 1 1 1 1 ...
1 6 1 1 1 1 1 ...
1 1 15 1 1 1 1 ...
1 1 1 28 1 1 1 ...
1 1 1 1 45 1 1 ...
1 1 1 1 1 66 1 ...
1 1 1 1 1 1 91 ...
MAPLE
d:=(i, j)->`if`(i<>j, 1, i*(2*i-1)):
seq(LinearAlgebra[Determinant](Matrix(n, d)), n=1..20);
MATHEMATICA
nmax = 20; Table[Det[Table[If[i == j, i*(2*i - 1), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[(n + 1/2) * (2*n - 1)! / (3 * 2^(n - 2)), {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[Det[DiagonalMatrix[PolygonalNumber[6, Range[n]]]/.(0->1)], {n, 20}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 23 2020 *)
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(2*i-1)))); \\ Michel Marcus, Apr 16 2018
CROSSREFS
Cf. A000384 (hexagonal numbers).
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's: A000142 (k=2), A067550 (k=3), A010791 (k=4, with offset 1), A302909 (k=5), this sequence (k=6), A302911 (k=7), A302912 (k=8), A302913 (k=9), A302914 (k=10).
Odd bisection of column k=1 of A097591.
Sequence in context: A147629 A274256 A280574 * A370576 A174486 A135438
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Apr 15 2018
STATUS
approved