login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147629
9-factorial numbers (4).
5
1, 5, 70, 1610, 51520, 2112320, 105616000, 6231344000, 423731392000, 32627317184000, 2805949277824000, 266565181393280000, 27722778864901120000, 3132674011733826560000, 382186229431526840320000, 50066396055530016081920000, 7009295447774202251468800000
OFFSET
1,2
LINKS
FORMULA
a(n+1) = Sum_{k=0..n} A132393(n,k)*5^k*9^(n-k). - Philippe Deléham, Nov 09 2008
From R. J. Mathar, Nov 09 2008: (Start)
a(n) = a(n-1) + (4 + 9*(n-2))*a(n-1) = (9*n-13)*a(n-1).
a(n) = 9^(n-1)*Gamma(n-4/9)/Gamma(5/9).
G.f.: z*2F0(5/9,1; -; 9*z). (End)
a(n) = (-4)^n*Sum_{k=0..n} (9/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
Sum_{n>=1} 1/a(n) = 1 + (e/9^4)^(1/9)*(Gamma(5/9) - Gamma(5/9, 1/9)). - Amiram Eldar, Dec 21 2022
MAPLE
seq(9^(n-1)*pochhammer(5/9, n-1), n = 1..20); # G. C. Greubel, Dec 03 2019
MATHEMATICA
Table[9^(n-1)*Pochhammer[5/9, n-1], {n, 20}] (* G. C. Greubel, Dec 03 2019 *)
PROG
(PARI) vector(20, n, prod(j=0, n-2, 9*j+5) ) \\ G. C. Greubel, Dec 03 2019
(Magma) [Round(9^(n-1)*Gamma(n-1 +5/9)/Gamma(5/9)): n in [1..20]]; // G. C. Greubel, Dec 03 2019
(Sage) [9^(n-1)*rising_factorial(5/9, n-1) for n in (1..20)] # G. C. Greubel, Dec 03 2019
KEYWORD
nonn
AUTHOR
STATUS
approved