login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280574
E.g.f. satisfies: A(x - Integral 3*A(x) dx) = x + Integral 2*A(x) dx.
10
1, 5, 70, 1775, 66175, 3283475, 204594175, 15411893450, 1366394303500, 139767921720875, 16243630181913625, 2118892887756520250, 307173379745256857875, 49084564051462443496250, 8586127214178418541668750, 1634509914502001105016284375, 336910750825106071274158853125, 74862327518834451026921878887500, 17862833297180486514281227128971875, 4561279298680105599840369905594562500
OFFSET
1,2
FORMULA
E.g.f. A(x) satisfies:
(1) A(x - Integral 3*A(x) dx) = x + Integral 2*A(x) dx.
(2) A(x) = x + 5 * G( (3*A(x) + 2*x)/5 ), where G(x) = Integral A(x) dx.
(3) A(x) = -2*x/3 + 5/3 * Series_Reversion(x - Integral 3*A(x) dx).
(4) A( (3*A(x) + 2*x)/5 ) = (A'(x) - 1)/(3*A'(x) + 2).
(5) A'(x - Integral 3*A(x) dx) = (1 + 2*A(x))/(1 - 3*A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 3^k * 5^(n-k-1).
EXAMPLE
E.g.f.: A(x) = x + 5*x^2/2! + 70*x^3/3! + 1775*x^4/4! + 66175*x^5/5! + 3283475*x^6/6! + 204594175*x^7/7! + 15411893450*x^8/8! + 1366394303500*x^9/9! + 139767921720875*x^10/10! + 16243630181913625*x^11/11! + 2118892887756520250*x^12/12! +...
Let G(x) = Integral A(x) dx, then A(x - 3*G(x)) = x + 2*G(x) where
G(x) = x^2/2! + 5*x^3/3! + 70*x^4/4! + 1775*x^5/5! + 66175*x^6/6! + 3283475*x^7/7! + 204594175*x^8/8! + 15411893450*x^9/9! + 1366394303500*x^10/10! + 139767921720875*x^11/11! + 16243630181913625*x^12/12! +...
Also, A(x) = x + 5 * G( (3*A(x) + 2*x)/5 ).
RELATED SERIES.
We have (3*A(x) + 2*x)/5 = Series_Reversion( x - Integral 3*A(x) dx ), where
(3*A(x) + 2*x)/5 = x + 3*x^2/2! + 42*x^3/3! + 1065*x^4/4! + 39705*x^5/5! + 1970085*x^6/6! + 122756505*x^7/7! + 9247136070*x^8/8! + 819836582100*x^9/9! + 83860753032525*x^10/10! + 9746178109148175*x^11/11! + 1271335732653912150*x^12/12! +...
Further, A( (3*A(x) + 2*x)/5 ) = (A'(x) - 1)/(3*A'(x) + 2), which begins
A( (3*A(x) + 2*x)/5 ) = x + 8*x^2/2! + 157*x^3/3! + 5075*x^4/4! + 230905*x^5/5! + 13636085*x^6/6! + 994743280*x^7/7! + 86697077570*x^8/8! + 8813260716925*x^9/9! + 1026216275720525*x^10/10! + 134948279040712300*x^11/11! + 19814992125974741525*x^12/12! +...
MATHEMATICA
m = 21; A[_] = 0;
Do[A[x_] = -2x/3 + 5/3 InverseSeries[x-Integrate[3A[x], x] + O[x]^m], {m}];
CoefficientList[A[x], x]*Range[0, m-1]! // Rest (* Jean-François Alcover, Sep 30 2019 *)
PROG
(PARI) /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
{a(n, p=3, q=2) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n, 3, 2), ", "))
(PARI) /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
{a(n, p=3, q=2) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
for(n=1, 30, print1(a(n, 3, 2), ", "))
(PARI) /* Informal code to generate the first N terms: */
{N=20; p=3; q=2; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2017
STATUS
approved