login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277403 E.g.f. satisfies: A(x - Integral A(x) dx) = x + Integral A(x) dx. 11
1, 2, 10, 90, 1190, 20930, 462070, 12326790, 386855630, 14000898310, 575440398330, 26532920708070, 1358954912773010, 76682330257445570, 4734315243483414890, 317932511564758225170, 23106045191162625194230, 1809303767549542227341490, 152057767850058496005946030, 13668688227104664304597942910, 1310201986290043690952261887230, 133552478071366935949713096470670, 14440878313638992240490923468851610 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is divisible by 10 for n>2 (conjecture).

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..200

FORMULA

Let G(x) = Integral A(x) dx, then e.g.f. A(x) also satisfies:

(1) A( (A(x) + x)/2 ) = (A'(x) - 1)/(A'(x) + 1).

(2) A(x) = x + 2 * G( (A(x) + x)/2 ).

(3) A(x) = -x + 2 * Series_Reversion(x - G(x)).

(4) R(x) = -x + 2 * Series_Reversion(x + G(x)), where R(A(x)) = x.

(5) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x.

a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^(n-k-1).

EXAMPLE

E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 90*x^4/4! + 1190*x^5/5! + 20930*x^6/6! + 462070*x^7/7! + 12326790*x^8/8! + 386855630*x^9/9! + 14000898310*x^10/10! +...

such that

A(x - Integral A(x) dx) = x + x^2/2! + 2*x^3/3! + 10*x^4/4! + 90*x^5/5! + 1190*x^6/6! + 20930*x^7/7! + 462070*x^8/8! +...+ a(n)*x^(n+1)/(n+1)! +...

which equals x + Integral A(x) dx.

RELATED SERIES.

Let G(x) = Integral A(x) dx, then

G( (A(x) + x)/2 ) = x^2/2! + 5*x^3/3! + 45*x^4/4! + 595*x^5/5! + 10465*x^6/6! + 231035*x^7/7! + 6163395*x^8/8! +...+ a(n)/2*x^n/n! +...

so that A(x) = x + 2 * G( (A(x) + x)/2 ).

A( (A(x) + x)/2 ) = x + 3*x^2/2! + 21*x^3/3! + 241*x^4/4! + 3885*x^5/5! + 81185*x^6/6! + 2093735*x^7/7! + 64463245*x^8/8! + 2313446975*x^9/9! + 95044136915*x^10/10! +...

which equals (A'(x) - 1)/(A'(x) + 1).

PROG

(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F = x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - intformal(F)) - intformal(F), #A) ); n!*A[n]}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A277410, A210949, A279843.

Sequence in context: A055779 A198434 A326089 * A179423 A320962 A067550

Adjacent sequences:  A277400 A277401 A277402 * A277404 A277405 A277406

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 14 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 07:31 EDT 2019. Contains 327995 sequences. (Running on oeis4.)