OFFSET
0,2
FORMULA
EXAMPLE
Illustration of initial terms.
a(0) = 1, by convention;
a(1) = 2, the function (1+x) evaluated at x=1;
a(2) = 9, the sum of permutations of compositions of functions (1+x) and (1+2*x), evaluated at x=1:
(1+x)o(1+2*x) + (1+2*x)o(1+x) = (2*x + 2) + (2*x + 3) = 4*x + 5.
a(3) = 76, the sum of permutations of compositions of functions (1+x), (1+2*x), and (1+3*x), evaluated at x=1:
(1+x)o(1+2*x)o(1+3*x) + (1+x)o(1+3*x)o(1+2*x) + (1+2*x)o(1+1*x)o(1+3*x) + (1+2*x)o(1+3*x)o(1+1*x) + (1+3*x)o(1+1*x)o(1+2*x) + (1+3*x)o(1+2*x)o(1+1*x) = (6*x + 4) + (6*x + 5) + (6*x + 5) + (6*x + 9) + (6*x + 7) + (6*x + 10) = 36*x + 40.
etc.
Alternatively,
a(1) = 2 = Sum_{i=1..1} (1+i),
a(2) = 9 = Sum_{i=1..2, j=1..2, j<>i} (1 + i*(1+j)),
a(3) = 76 = Sum_{i=1..3, j=1..3, k=1..3, i,j,k distinct} (1 + i*(1 + j*(1+k))),
a(4) = 1100 = Sum_{i=1..4, j=1..4, k=1..4, m=1..4, i,j,k,m distinct} (1 + i*(1 + j*(1 + k*(1+m)))), etc.
MATHEMATICA
Table[Sum[k!*(n-k)! * Sum[(-1)^(n-i+1) * StirlingS2[i, n-k+1] * StirlingS1[n+1, i], {i, 0, n-k+1}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 27 2016 *)
PROG
(PARI) {a(n) = sum(k=0, n, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 16 2016
STATUS
approved