login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277408
Triangle, read by rows, where the g.f. of row n equals the sum of permutations of compositions of functions (1 + k*y*x) for k=1..n with parameter y independent of variable x, as evaluated at x=1.
2
1, 1, 1, 2, 3, 4, 6, 12, 22, 36, 24, 60, 140, 300, 576, 120, 360, 1020, 2700, 6576, 14400, 720, 2520, 8400, 26460, 77952, 211680, 518400, 5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600, 40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400, 362880, 1814400, 8769600, 40824000, 182226240, 775656000, 3126297600, 11820816000, 41391544320, 131681894400, 3628800, 19958400, 106444800, 548856000, 2726317440, 12989592000, 59044550400, 254303280000, 1028448368640, 3856920883200, 13168189440000, 39916800, 239500800, 1397088000, 7903526400, 43233886080, 227885011200, 1152535824000, 5563643500800, 25464033745920, 109530230261760, 437429486592000, 1593350922240000
OFFSET
0,4
FORMULA
T(n,k) = k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i)). [From formula in A188881 by Vladimir Kruchinin]
T(n,k) = k! * A188881(n+1, n-k+1).
A003713(n) = Sum_{k=0..n} T(n,k) / k!, where e.g.f. of A003713 is log(1/(1+log(1-x))).
Row sums yield A277406.
EXAMPLE
Illustration of initial row polynomials.
R_0(y) = 1;
R_1(y) = 1 + y;
R_2(y) = 2 + 3*y + 4*y^2;
R_3(y) = 6 + 12*y + 22*y^2 + 36*y^3;
R_4(y) = 24 + 60*y + 140*y^2 + 300*y^3 + 576*y^4;
R_5(y) = 120 + 360*y + 1020*y^2 + 2700*y^3 + 6576*y^4 + 14400*y^5;
R_6(y) = 720 + 2520*y + 8400*y^2 + 26460*y^3 + 77952*y^4 + 211680*y^5 + 518400*y^6;
R_7(y) = 5040 + 20160*y + 77280*y^2 + 282240*y^3 + 974736*y^4 + 3151680*y^5 + 9408960*y^6 + 25401600*y^7;
...
Generating Method.
R_0(y) = 1, by convention;
R_1(y) = Sum_{i=1..1} (1 + i*y);
R_2(y) = Sum_{i=1..2, j=1..2, j<>i} (1 + i*y*(1 + j*y));
R_3(y) = Sum_{i=1..3, j=1..3, k=1..3, i,j,k distinct} (1 + i*y*(1 + j*y*(1 + k*y)));
R_4(y) = Sum_{i=1..4, j=1..4, k=1..4, m=1..4, i,j,k,m distinct} (1 + i*y*(1 + j*y*(1 + k*y*(1 + m*y))));
etc.
This triangle of coefficients begins:
1;
1, 1;
2, 3, 4;
6, 12, 22, 36;
24, 60, 140, 300, 576;
120, 360, 1020, 2700, 6576, 14400;
720, 2520, 8400, 26460, 77952, 211680, 518400;
5040, 20160, 77280, 282240, 974736, 3151680, 9408960, 25401600;
40320, 181440, 786240, 3265920, 12930624, 48444480, 170098560, 552303360, 1625702400;
362880, 1814400, 8769600, 40824000, 182226240, 775656000, 3126297600, 11820816000, 41391544320, 131681894400;
3628800, 19958400, 106444800, 548856000, 2726317440, 12989592000, 59044550400, 254303280000, 1028448368640, 3856920883200, 13168189440000;
39916800, 239500800, 1397088000, 7903526400, 43233886080, 227885011200, 1152535824000, 5563643500800, 25464033745920, 109530230261760, 437429486592000, 1593350922240000; ...
PROG
(PARI) {T(n, k) = k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1))}
for(n=0, 11, for(k=0, n, print1( T(n, k) , ", ")); print(""))
(PARI) {T(n, k) = if( k<0 || k>n, 0, n! * k! * polcoeff( (x / (1 - exp(-x * (1 + x * O(x^n)))))^(n+1), k))}; /* Michael Somos, May 10 2017 */
CROSSREFS
Cf. A277406 (row sums), A277405, A277407, A188881, A003713.
Sequence in context: A242459 A260987 A102462 * A018369 A324178 A214570
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 16 2016
STATUS
approved