login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277409
a(n) equals the coefficient of x^n in (1 - log(1-x))^n! for n>=0.
1
1, 1, 2, 37, 13921, 207504608, 193499235977786, 16390183551007874514674, 173238206541606827885872411575542, 300679807333480520851459179939426369369129736, 109110688416565628491410454990885244124132946665282604804584, 10269686361506102165964632192322962717141565478713927846953403915348531319392, 304583662721691547994723721287871614789227410136168948343531184046989057630321931742841867554016
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} binomial(n!,k) * k!/n! * (-1)^(n-k) * Stirling1(n,k).
EXAMPLE
Illustration of initial terms.
a(0) = 1;
a(1) = [x^1] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^1! = 1 ;
a(2) = [x^2] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^2!, or
a(2) = [x^2] (1 + 2*x + 2*x^2 + 5/3*x^3 + 17/12*x^4 +...) = 2 ;
a(3) = [x^3] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^3!, or
a(3) = [x^3] (1 + 6*x + 18*x^2 + 37*x^3 + 241/4*x^4 +...) = 37 ;
a(4) = [x^4] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^4!, or
a(4) = [x^4] (1 + 24*x + 288*x^2 + 2308*x^3 + 13921*x^4 +...) = 13921 ;
...
a(n) = [x^n] (1 + x + x^2/2 + x^3/3 + x^4/4 +...+ x^k/k +...)^n! ;
...
The coefficients of x^k, k=0..n, in (1 - log(1-x))^n! forms the triangle T(n,k):
[1];
[1, 1];
[1, 2, 2];
[1, 6, 18, 37];
[1, 24, 288, 2308, 13921];
[1, 120, 7200, 288020, 8642405, 207504608];
[1, 720, 259200, 62208120, 11197526430, 1612462485648, 193499235977786];
[1, 5040, 12700800, 21337344840, 26885057673810, 27100144537250736, 22764130374754974422, 16390183551007874514674];
[1, 40320, 812851200, 10924720134720, 110121179161192080, 888017192033323164288, 5967475567171901800336816, 34372659584069639646227206672, 173238206541606827885872411575542]; ...
in which the main diagonal forms this sequence: a(n) = T(n,n),
where
T(n,k) = Sum_{j=0..k} binomial(n!, j) * j!/k! * (-1)^(k-j) * Stirling1(k, j).
PROG
(PARI) {a(n) = polcoeff( (1 - log(1-x +x*O(x^n)))^n!, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, binomial(n!, k) * k!/n! * (-1)^(n-k) * stirling(n, k, 1) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {T(n, k) = sum(j=0, k, binomial(n!, j) * j!/k! * (-1)^(k-j) * stirling(k, j, 1) )}
for(n=0, 20, print1(T(n, n), ", "))
CROSSREFS
Cf. A277759.
Sequence in context: A083189 A145798 A110762 * A201556 A284309 A227468
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 28 2016
STATUS
approved