login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284309 Number of singular vector tuples for a general n-dimensional {n}^n tensor. 1
1, 2, 37, 51264, 14346274601, 1435747717722810960, 79118094349714452632485774477, 3409699209687052091502059492845005192560640, 154730604283618051465998344012575355916858352712971348277665, 9576184829775011641104888042379740657096306109466956243538100418643876547244800 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016; also arXiv preprint arXiv:1605.00172, 2016.
Shmuel Friedland and Giorgio Ottaviani, The number of singular vector tuples and uniqueness of best rank-one approximation of tensors, Found. Comput. Math. 14 (2014), no. 6, 1209-1242.
Bernd Sturmfels, Tensors and Their Eigenvalues, Notices AMS, 63 (No. 6, 2016), 606-606.
MATHEMATICA
a[1] = 1;
a[n_] := Module[{Z, z, P},
Z[i_] := Sum[z[k], {k, 1, n}] - z[i];
P = Product[(Z[i]^n - z[i]^n)/(Z[i] - z[i]), {i, 1, n}] // Cancel;
SeriesCoefficient[P, Sequence @@ Table[{z[i], 0, n-1}, {i, 1, n}]]
];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 5}] (* Jean-François Alcover, Aug 06 2018 *)
CROSSREFS
Main diagonal of A284308.
Sequence in context: A110762 A277409 A201556 * A227468 A049487 A163792
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 24 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 04:17 EST 2023. Contains 367506 sequences. (Running on oeis4.)