login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284309
Number of singular vector tuples for a general n-dimensional {n}^n tensor.
1
1, 2, 37, 51264, 14346274601, 1435747717722810960, 79118094349714452632485774477, 3409699209687052091502059492845005192560640, 154730604283618051465998344012575355916858352712971348277665, 9576184829775011641104888042379740657096306109466956243538100418643876547244800
OFFSET
1,2
LINKS
Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, 2016; also arXiv preprint arXiv:1605.00172, 2016.
Shmuel Friedland and Giorgio Ottaviani, The number of singular vector tuples and uniqueness of best rank-one approximation of tensors, Found. Comput. Math. 14 (2014), no. 6, 1209-1242.
Bernd Sturmfels, Tensors and Their Eigenvalues, Notices AMS, 63 (No. 6, 2016), 606-606.
MATHEMATICA
a[1] = 1;
a[n_] := Module[{Z, z, P},
Z[i_] := Sum[z[k], {k, 1, n}] - z[i];
P = Product[(Z[i]^n - z[i]^n)/(Z[i] - z[i]), {i, 1, n}] // Cancel;
SeriesCoefficient[P, Sequence @@ Table[{z[i], 0, n-1}, {i, 1, n}]]
];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 5}] (* Jean-François Alcover, Aug 06 2018 *)
CROSSREFS
Main diagonal of A284308.
Sequence in context: A110762 A277409 A201556 * A227468 A049487 A163792
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 24 2017
STATUS
approved