login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277407
a(n) = A277406(n)/(n+1).
3
1, 1, 3, 19, 220, 4196, 120876, 4915212, 268194816, 18903020544, 1671209210880, 181064295924480, 23589442167333120, 3638090042721918720, 655483159341216541440, 136420837710333144595200, 32478481518550347674419200, 8770206330674425311097651200, 2666047809138871800854163456000, 906320525390421790143785781657600, 342508343836409428996994343026688000
OFFSET
0,3
COMMENTS
A277406(n) equals the sum of all permutations of compositions of functions (1 + k*x) for k=1..n, evaluated at x=1.
FORMULA
a(n) = 1/(n+1) * Sum_{k=0..n} k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i)).
PROG
(PARI) {a(n) = 1/(n+1) * sum(k=0, n, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A001833 A001035 A267634 * A271587 A217906 A166380
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 16 2016
STATUS
approved