login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217906 O.g.f.: 1 / Sum_{n>=0} -n^n*(n-1)^(n-1) * exp(-n*(n-1)*x) * x^n / n!. 2
1, 1, 3, 19, 223, 4019, 98071, 3012595, 111408735, 4813926235, 237893755847, 13230156372931, 817650834368367, 55588558619887179, 4122802071853330711, 331247290236326404499, 28660436738240190615167, 2656810905539387715877787, 262694577305483845458361767 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..300

FORMULA

Convolution inverse of A217905.

a(n) ~ 2^(2*n - 2) * n^(n - 3/2) / (sqrt(Pi) * sqrt(1-c) * exp(n) * c^(n - 1/2) * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Aug 22 2018

EXAMPLE

O.g.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 223*x^4 + 4019*x^5 + 98071*x^6 +...

where

A(x) = 1/(1 - 1^1*0^0*x*exp(-1*0*x) - 2^2*1^1*exp(-2*1*x)*x^2/2! - 3^3*2^2*exp(-3*2*x)*x^3/3! - 4^4*3^3*exp(-4*3*x)*x^4/4! - 5^5*4^4*exp(-5*4*x)*x^5/5! +...).

simplifies to a power series in x with integer coefficients.

PROG

(PARI) {a(n)=polcoeff(1/sum(m=0, n, -m^m*(m-1)^(m-1)*x^m*exp(-m*(m-1)*x+x*O(x^n))/m!), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A217905.

Sequence in context: A267634 A277407 A271587 * A166380 A136652 A136504

Adjacent sequences:  A217903 A217904 A217905 * A217907 A217908 A217909

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)