login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A277406(n)/(n+1).
3

%I #9 Oct 16 2016 23:00:13

%S 1,1,3,19,220,4196,120876,4915212,268194816,18903020544,1671209210880,

%T 181064295924480,23589442167333120,3638090042721918720,

%U 655483159341216541440,136420837710333144595200,32478481518550347674419200,8770206330674425311097651200,2666047809138871800854163456000,906320525390421790143785781657600,342508343836409428996994343026688000

%N a(n) = A277406(n)/(n+1).

%C A277406(n) equals the sum of all permutations of compositions of functions (1 + k*x) for k=1..n, evaluated at x=1.

%F a(n) = 1/(n+1) * Sum_{k=0..n} k!*(n-k)! * Sum_{i=0..n-k+1} (-1)^(n-i+1) * Stirling2(i,n-k+1) * Stirling1(n+1,i)).

%o (PARI) {a(n) = 1/(n+1) * sum(k=0, n, k!*(n-k)! * sum(i=0, n-k+1, (-1)^(n-i+1) * stirling(i, n-k+1, 2) * stirling(n+1, i, 1)))}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A277405, A277406.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 16 2016