login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277759 a(n) equals the coefficient of x^n in n!*(1 - log(1-x))^n. 3
1, 1, 4, 30, 324, 4540, 78060, 1589448, 37388400, 997513200, 29759790240, 981669324240, 35475203063520, 1393746645107232, 59147129937893088, 2696314664384853120, 131405475202661963520, 6817779852438948837120, 375193156508083422581760 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..375

FORMULA

a(n) = Sum_{k=0..n} binomial(n,k) * k! * (-1)^(n-k) * Stirling1(n,k).

a(n) ~ d^n * n^n / (sqrt(d-1) * exp(n)), where d = A226572 = -LambertW(-1, -exp(-2)) = 3.146193220620582585237...

MATHEMATICA

Table[n!*SeriesCoefficient[(1-Log[1-x])^n, {x, 0, n}], {n, 0, 20}]

Table[Sum[Binomial[n, k]*k!*(-1)^(n-k)*StirlingS1[n, k], {k, 0, n}], {n, 0, 20}]

CROSSREFS

Cf. A277409, A226572.

Sequence in context: A180623 A128329 A211828 * A006149 A207833 A121413

Adjacent sequences:  A277756 A277757 A277758 * A277760 A277761 A277762

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Oct 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 04:06 EDT 2020. Contains 337441 sequences. (Running on oeis4.)