OFFSET
1,1
COMMENTS
Let h(x) be the greater of the two solutions of s + log(s) = x; then this sequence represents h(2). The function h(x) is plotted by the Mathematica program. [This comment is wrong. A226571 = LambertW(exp(2)) = 1.5571455989976... is the unique root of the equation s + log(s) = 2. Equation s - log(s) = 2 does have two roots, but they are s = -LambertW(-1,-exp(-2)) = 3.14619322062... (this sequence) and s = -LambertW(-exp(-2)) = 0.158594339563... (A202348, not A226571). - Vaclav Kotesovec, Jan 09 2014]
Apart from the first digit the same as A202321. - R. J. Mathar, Jun 15 2013
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..1000
FORMULA
Equals -LambertW(-1, -exp(-2)) = A202321 + 2. - Vaclav Kotesovec, Jan 09 2014
EXAMPLE
2 + log 2 = 2.693147...
2 + log(2 + log 2) = 2.990710...
2 + log(2 + log(2 + log 2)) = 3.095510...
limit(f(n)) = 3.14619322062...
MATHEMATICA
f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1]
g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1]
d1 = RealDigits[f[2, 200]][[1]] (* A226571 *)
d2 = RealDigits[g[2, 200]][[1]] (* A226572 *)
s /. NSolve[s - Log[s] == 2, 200] (* both constants *)
h[x_] := s /. NSolve[s - Log[s] == x]
Plot[h[x], {x, 1, 3}, PlotRange -> {0, 1}] (* bottom branch of h *)
Plot[h[x], {x, 1, 3}, PlotRange -> {1, 5}] (* top branch *)
PROG
(PARI) default(realprecision, 100); solve(x=3, 4, x - log(x) - 2) \\ Jianing Song, Dec 30 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jun 12 2013
EXTENSIONS
Definition revised by N. J. A. Sloane, Dec 09 2017
STATUS
approved