The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135611 Decimal expansion of sqrt(2) + sqrt(3). 9
 3, 1, 4, 6, 2, 6, 4, 3, 6, 9, 9, 4, 1, 9, 7, 2, 3, 4, 2, 3, 2, 9, 1, 3, 5, 0, 6, 5, 7, 1, 5, 5, 7, 0, 4, 4, 5, 5, 1, 2, 4, 7, 7, 1, 2, 9, 1, 8, 7, 3, 2, 8, 7, 0, 1, 2, 3, 2, 4, 8, 6, 7, 1, 7, 4, 4, 2, 6, 6, 5, 4, 9, 5, 3, 7, 0, 9, 0, 7, 0, 7, 5, 9, 3, 1, 5, 3, 3, 7, 2, 1, 0, 8, 4, 8, 9, 0, 1, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Alexander R. Povolotsky, Mar 04 2008: (Start) The value of sqrt(2) + sqrt(3) ~= 3.146264369941972342329135... is "close" to Pi. [See Borel 1926. - Charles R Greathouse IV, Apr 26 2014] We can get a better approximation by solving the equation: (2-x)^(1/(2+x)) + (3-x)^(1/(2+x)) = Pi. Olivier Gérard finds that x is 0.00343476569746030039595770020414255107204742044644777... (End) Another approximation to Pi is (203*sqrt(2)+ 197*sqrt(3))/200 = 3.1414968... - Alexander R. Povolotsky, Mar 22 2008 Shape of a sqrt(8)-extension rectangle; see A188640.  - Clark Kimberling, Apr 13 2011 This number is irrational, as instinct would indicate. Niven (1961) gives a proof of irrationality that requires first proving that sqrt(6) is irrational. - Alonso del Arte, Dec 07 2012 An algebraic integer of degree 4: largest root of x^4 - 10*x^2 + 1. - Charles R Greathouse IV, Sep 13 2013 Karl Popper considers whether this approximation to Pi might have been known to Plato, or even conjectured to be exact. - Charles R Greathouse IV, Apr 26 2014 REFERENCES Emile Borel, Space and Time (1926). Susan Landau, "Simplification of nested radicals." SIAM Journal on Computing 21.1 (1992): 85-110. See page 85. [Do not confuse this paper with the short FOCS conference paper with the same title, which is only a few pages long.] Ivan Niven, Numbers: Rational and Irrational. New York: Random House for Yale University (1961): 44. Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts: A. K. Peters (2002): 44. LINKS G. C. Greubel, Table of n, a(n) for n = 1..2500 Burkard Polster, Irrational roots, Mathologer video (2018) Karl Popper, The Open Society and Its Enemies, 1962. FORMULA Sqrt(2)+sqrt(3) = sqrt(5+2*sqrt(6)). [Landau, p. 85] - N. J. A. Sloane, Aug 27 2018 EXAMPLE 3.14626436994197234232913506571557044551247712918732870... MATHEMATICA r = 8^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][] (* A135611 *) ContinuedFraction[t, 120]  (* A089078 *) RealDigits[Sqrt + Sqrt, 10, 100][] (* G. C. Greubel, Oct 22 2016 *) PROG (PARI) sqrt(2)+sqrt(3) \\ Charles R Greathouse IV, Sep 13 2013 (MAGMA) SetDefaultRealField(RealField(100)); Sqrt(2) + Sqrt(3); // G. C. Greubel, Nov 20 2018 (Sage) numerical_approx(sqrt(2)+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018 CROSSREFS Cf. A188640, A089078, A002193, A002194, A010464. Sequence in context: A143790 A226572 A251633 * A306804 A199372 A011089 Adjacent sequences:  A135608 A135609 A135610 * A135612 A135613 A135614 KEYWORD nonn,cons AUTHOR N. J. A. Sloane, Mar 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 05:02 EDT 2021. Contains 343836 sequences. (Running on oeis4.)