login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277756
Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.
3
1, 5, 32, 224, 1723, 14569, 135286, 1375882, 15263414, 183817326, 2391291386, 33443618930, 500611975023, 7988044467121, 135376576319870, 2428721569276698, 45988428905194350, 916607431346170686, 19182997480530342168, 420606731490047403144
OFFSET
0,2
COMMENTS
Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 1, 4, 5, 12, 13, ...} = { 2^i-4, 2^i-3 | i>=2 }.
LINKS
FORMULA
Recurrence: n^2*(n+1)*(8*n^16 - 324*n^15 + 6627*n^14 - 87027*n^13 + 780619*n^12 - 4852225*n^11 + 20603783*n^10 - 54969555*n^9 + 52518873*n^8 + 263990331*n^7 - 1493664427*n^6 + 3993049393*n^5 - 6338994427*n^4 + 5219525379*n^3 - 208155582*n^2 - 3017597166*n + 1500639210)*a(n) = (16*n^20 - 512*n^19 + 7810*n^18 - 63907*n^17 + 125587*n^16 + 3122233*n^15 - 38493280*n^14 + 230844282*n^13 - 835406452*n^12 + 1696593140*n^11 - 205259278*n^10 - 11408670034*n^9 + 41877803802*n^8 - 78160407832*n^7 + 66176874282*n^6 + 28732169489*n^5 - 121052415075*n^4 + 101990581575*n^3 - 30017409912*n^2 + 2376230256*n - 1500639210)*a(n-1) - (8*n^21 - 108*n^20 - 1537*n^19 + 68210*n^18 - 1094143*n^17 + 10095374*n^16 - 55215407*n^15 + 145867798*n^14 + 207571130*n^13 - 3618003314*n^12 + 16712054348*n^11 - 45380132762*n^10 + 68844700788*n^9 + 3118224998*n^8 - 280665562873*n^7 + 597311526024*n^6 - 339913057015*n^5 - 736454012982*n^4 + 1583292134673*n^3 - 1163990061738*n^2 + 239783072958*n + 66391169670)*a(n-2) + 2*(48*n^21 - 1536*n^20 + 23158*n^19 - 183757*n^18 + 221058*n^17 + 11736518*n^16 - 139812764*n^15 + 849893261*n^14 - 3103145857*n^13 + 5885285434*n^12 + 4549993672*n^11 - 76009600910*n^10 + 293460263060*n^9 - 661116809084*n^8 + 807883602348*n^7 + 2415933549*n^6 - 1768326853960*n^5 + 2768261414022*n^4 - 1612284665202*n^3 - 46857648087*n^2 + 218218164669*n + 98070916860)*a(n-3) - 4*(96*n^21 - 3824*n^20 + 76108*n^19 - 967312*n^18 + 8230515*n^17 - 45136547*n^16 + 127907470*n^15 + 169884028*n^14 - 3686404098*n^13 + 20071768963*n^12 - 67940536761*n^11 + 154148555189*n^10 - 193594359619*n^9 - 89277087131*n^8 + 921649634933*n^7 - 1534876599357*n^6 - 198633061278*n^5 + 4903659055674*n^4 - 8336147283495*n^3 + 5973270250797*n^2 - 1064158064361*n - 539137461240)*a(n-4) + 8*(n-4)^2*(2*n - 9)^2*(2*n - 7)*(8*n^16 - 196*n^15 + 2727*n^14 - 23789*n^13 + 119465*n^12 - 267991*n^11 - 414841*n^10 + 5444929*n^9 - 23332455*n^8 + 66119405*n^7 - 117282857*n^6 + 58753831*n^5 + 267053105*n^4 - 695018505*n^3 + 683003538*n^2 - 193704714*n - 67206510)*a(n-5). - Vaclav Kotesovec, Apr 25 2017
a(n) ~ c * n^(n + 7/2) / exp(n), where c = 0.81569546019... - Vaclav Kotesovec, Apr 25 2017
MAPLE
b:= proc(x, y, t) option remember; `if`(x<0 or y<0, 0,
`if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(
`if`(y<x, b(x-1, y, 0), 0)+ `if`(y<=x,
b(x, y-1, 0), 0)+`if`(y>=x, b(x-1, y-1, 0), 0)+
`if`(y>x+1 and t<>2, b(x+1, y-1, 1), 0)+
`if`(y>=x and t<>1, b(x-1, y+1, 2), 0))))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..25);
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, {0, 0}, If[x == 0 && y == 0, {1, 1}, # + {0, #[[1]]}&[If[y < x, b[x-1, y, 0], 0] + If[y <= x, b[x, y-1, 0], 0] + If[y >= x, b[x-1, y-1, 0], 0] + If[y > x+1 && t != 2, b[x+1, y-1, 1], 0] + If[y >= x && t != 1, b[x-1, y+1, 2], 0]]]];
a[n_] := b[n, n, 0][[2]];
a /@ Range[0, 25] (* Jean-François Alcover, Oct 19 2019, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A164594 A305312 A199486 * A208632 A065071 A153396
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 28 2016
STATUS
approved