login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277359
Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.
6
1, 2, 7, 32, 176, 1126, 8227, 67768, 622706, 6323932, 70400734, 852952952, 11176241098, 157506733030, 2375966883371, 38200984291800, 652179787654530, 11783182484950980, 224623760504277810, 4505795627243046240, 94873821120923655336, 2092249161797280567516
OFFSET
0,2
COMMENTS
Both endpoints of each step have to satisfy the given restrictions.
a(n) is odd for n in {0, 2, 6, 14, 30, 62, ... } = { 2^n-2 | n>0 }.
LINKS
FORMULA
a(n) ~ exp(1)*(exp(1)-2) * n! * n. - Vaclav Kotesovec, Oct 13 2016
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 2, 7][n+1],
((n^3+10*n^2-10*n+1)*a(n-1)-(2*(4*n^3+2*n^2-29*n+28))
*a(n-2)+(4*(n-2))*(2*n-3)^2*a(n-3))/(n*(n+1)))
end:
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := a[n] = If[n<3, {1, 2, 7}[[n+1]], ((n^3+10*n^2-10*n+1)*a[n-1] - (2*(4*n^3+2*n^2-29*n+28))*a[n-2] + (4*(n-2))*(2*n-3)^2*a[n-3])/(n*(n+1)) ]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 25 2017, translated from Maple *)
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 10 2016
STATUS
approved