login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143426
G.f. satisfies: A(x) = 1 + x*A(x*A(x))^2.
8
1, 1, 2, 7, 32, 175, 1086, 7429, 54994, 435120, 3647686, 32192596, 297654824, 2872372828, 28841766844, 300592170551, 3244942353856, 36219458512421, 417365572999944, 4958429472475171, 60659660219655616, 763325035692109389
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: x - G(x) = G(x)^2*A(x)^2 where G(x*A(x)) = x.
G.f. satisfies: A(x) = exp( Sum_{n>=0} [d^n/dx^n x^(2n+1)*A(x)^(2n+2)]*A(x)^(-2n-2)/(n+1)! ). [Paul D. Hanna, Dec 18 2010]
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 32*x^4 + 175*x^5 + 1086*x^6 +...
A(x*A(x)) = 1 + x + 3*x^2 + 13*x^3 + 70*x^4 + 434*x^5 + 2986*x^6 +...
A(x*A(x))^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 175*x^4 + 1086*x^5 +...
Logarithmic series:
log(A(x)) = x + [d/dx x^3*A(x)^4]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^6]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^8]*A(x)^(-8)/4! +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^2, x, x*A)); polcoeff(A, n)}
(PARI) /* n-th Derivative: */
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,
A=exp(sum(m=0, n, Dx(m, x^(2*m+1)*A^(2*m+2))*A^(-2*m-2)/(m+1)!)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 14 2008
STATUS
approved