login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087949
G.f. satisfies A(x) = 1 + x*A(x*A(x)).
12
1, 1, 1, 2, 5, 16, 59, 246, 1131, 5655, 30428, 174835, 1066334, 6870542, 46581883, 331237074, 2463361903, 19112314727, 154364077009, 1295325828045, 11273167827343, 101589943242179, 946577526626181, 9107029927925714, 90359115887726302, 923509462029444933
OFFSET
0,4
LINKS
FORMULA
Let G(x) = x*A(x), then the following statements hold:
* G(x) = x*(1 + sqrt(1 + 4*G(G(x))))/2;
* G(x) = Series_Reversion[2*x/(1 + sqrt(1 + 4*G(x)))].
- Paul D. Hanna, May 15 2008
From Paul D. Hanna, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + xB;
B = 1 + xAC;
C = 1 + xABD;
D = 1 + xABCE;
E = 1 + xABCDF ; ... (End)
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n, then
a(n,m) = Sum_{k=0..n} m*C(n-k+m,k)/(n-k+m) * a(n-k,k) with a(0,m)=1.
(End)
G.f. satisfies: A(x) = exp( Sum_{n>=0} [d^n/dx^n x^(2n+1)*A(x)^(n+1)] *A(x)^(-2n-2)/(n+1)! ). - Paul D. Hanna, Dec 18 2010
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 +...
A(xA(x)) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 59*x^5 +...
Logarithmic series:
log(A(x)) = x/A(x) + [d/dx x^3*A(x)^2]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^(-8)/4! +...
Let G(x) = x*A(x) then
x = G(x*[1 - G(x) + 2*G(x)^2 - 5*G(x)^3 + 14*G(x)^4 - 42*G(x)^5 +-...])
where the unsigned coefficients are the Catalan numbers (A000108).
MAPLE
A:= proc(n) option remember; `if`(n=0, 1, (T->
unapply(convert(series(1+x*T(x*T(x)), x, n+1)
, polynom), x))(A(n-1)))
end:
a:= n-> coeff(A(n)(x), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, May 15 2016
MATHEMATICA
a[n_] := (A=x; If[n<1, 0, For[i=1, i <= n, i++, A = InverseSeries[2*(x/(1 + Sqrt[1 + 4*A + x*O[x]^n]))]]]; SeriesCoefficient[A, {x, 0, n}]); Array[a, 26] (* Jean-François Alcover, Oct 04 2016, adapted from PARI *)
PROG
(PARI) {a(n)=my(A=x); if(n<1, 0, for(i=1, n, A=serreverse(2*x/(1 + sqrt(1+4*A +x*O(x^n))))); polcoeff(A, n))}
(PARI) {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n-k+m, k)/(n-k+m)*a(n-k, k))))} \\ Paul D. Hanna, Jul 09 2009
(PARI) /* n-th Derivative: */
{Dx(n, F)=my(D=F); for(i=1, n, D=deriv(D)); D}
/* G.f. */
{a(n)=my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=0, n, Dx(m, x^(2*m+1)*A^(m+1))*A^(-2*m-2)/(m+1)!)+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 18 2010
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 16 2003
EXTENSIONS
Edited by N. J. A. Sloane, May 19 2008
STATUS
approved