OFFSET
1,2
COMMENTS
Since the computation of the algorithm needs an extension of the integer part over a subset of C, the rule: floor(I*x) = i*floor(x) is used (which is what MuPAD does). The following program computes the exact value of the sum.
For all a(n) in the sequence, the relation: (2k)^2 <= a(n) <= (2k+1)^2 is true.
EXAMPLE
kappa(1/sqrt(-203)) = (1/2 + (1/2)i) - (1/29 + (1/29)i)*sqrt(203).
PROG
(MuPAD) kappa_1_over_comp_sqrt := proc(n) local a, b, i, p; begin if (a := sqrt(-n)-isqrt(-n)) = 0 then return(0) end_if: a := simplify(1/a, sqrt); i := a := simplify(1/(a - floor(a)), sqrt); p := 1; b := 0; repeat p := p*a; b := b*a+a-floor(a); until (a := simplify(1/(a-floor(a)), sqrt)) = i end_repeat: return(simplify((1-isqrt(n)/sqrt(n))*(1+b/(p-1)+1/a-floor(1/a)), sqrt)); end_proc:
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Baruchel, Sep 07 2003
STATUS
approved