login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047432 Numbers that are congruent to {0, 1, 4, 5, 6} mod 8. 1
0, 1, 4, 5, 6, 8, 9, 12, 13, 14, 16, 17, 20, 21, 22, 24, 25, 28, 29, 30, 32, 33, 36, 37, 38, 40, 41, 44, 45, 46, 48, 49, 52, 53, 54, 56, 57, 60, 61, 62, 64, 65, 68, 69, 70, 72, 73, 76, 77, 78, 80, 81, 84, 85, 86, 88, 89, 92, 93, 94, 96, 97, 100, 101, 102 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..65.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).

FORMULA

G.f.: x^2*(1+x)*(2*x^3-x^2+2*x+1) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011

From Wesley Ivan Hurt, Aug 01 2016: (Start)

a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.

a(n) = (40*n - 40 + 3*(n mod 5) + 3*((n+1) mod 5) - 7*((n+2) mod 5) + 3*((n+3) mod 5) - 2*((n+4) mod 5))/25.

a(5k) = 8k-2, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-7, a(5k-4) = 8k-8. (End)

MAPLE

A047432:=n->8*floor(n/5)+[(0, 1, 4, 5, 6)][(n mod 5)+1]: seq(A047432(n), n=0..100); # Wesley Ivan Hurt, Aug 01 2016

MATHEMATICA

Select[Range[0, 100], MemberQ[{0, 1, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Aug 01 2016 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [0, 1, 4, 5, 6]]; // Wesley Ivan Hurt, Aug 01 2016

(PARI) a(n)=[-2, 0, 1, 4, 5][n%5+1] + n\5*8 \\ Charles R Greathouse IV, Aug 01 2016

CROSSREFS

Sequence in context: A285279 A091242 A089253 * A095279 A030751 A087947

Adjacent sequences:  A047429 A047430 A047431 * A047433 A047434 A047435

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 23:55 EDT 2019. Contains 327286 sequences. (Running on oeis4.)