login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047434
Numbers that are congruent to {0, 2, 4, 5, 6} mod 8.
2
0, 2, 4, 5, 6, 8, 10, 12, 13, 14, 16, 18, 20, 21, 22, 24, 26, 28, 29, 30, 32, 34, 36, 37, 38, 40, 42, 44, 45, 46, 48, 50, 52, 53, 54, 56, 58, 60, 61, 62, 64, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 96, 98, 100, 101, 102
OFFSET
1,2
FORMULA
G.f.: x^2*(2+2*x+x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Aug 01 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 35 + 3*(n mod 5) + 3*((n+1) mod 5) - 2*((n+2) mod 5) - 2*((n+3) mod 5) - 2*((n+4) mod 5))/25.
a(5k) = 8k-2, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
MAPLE
A047434:=n->8*floor(n/5)+[(0, 2, 4, 5, 6)][(n mod 5)+1]: seq(A047434(n), n=0..100); # Wesley Ivan Hurt, Aug 01 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Aug 01 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 4, 5, 6]]; // Wesley Ivan Hurt, Aug 01 2016
CROSSREFS
Sequence in context: A026435 A026437 A026441 * A062414 A324694 A249025
KEYWORD
nonn,easy
STATUS
approved