login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087948 Sum of successive remainders in computing euclidean algorithm for (1, -1/sqrt(-n)) has real and imaginary parts equal. 1
1, 4, 5, 9, 16, 17, 18, 25, 36, 37, 39, 49, 64, 65, 66, 68, 81, 100, 101, 105, 121, 126, 144, 145, 146, 147, 150, 169, 196, 197, 203, 225, 256, 257, 258, 260, 264, 289, 324, 325, 327, 333, 361, 400, 401, 402, 405, 410, 441, 484, 485, 495, 529, 576, 577, 578, 579 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Since the computation of the algorithm needs an extension of the integer part over a subset of C, the rule: floor(i*x) = i*floor(x) is used (which is what MuPAD does). The following program computes the exact value of the sum.

LINKS

Table of n, a(n) for n=1..57.

EXAMPLE

kappa(-1/sqrt(-105)) = -(1/210 + (1/210)i)*sqrt(105).

PROG

(MuPAD) kappa_neg_1_over_comp_sqrt := proc(n) local a, b, i, p; begin if (a := -sqrt(-n)+ceil(sqrt(-n))) = 0 then return(0) end_if: i := a := simplify(1/a, sqrt); p := 1; b := 0; repeat p := p*a; b := b*a+a-floor(a); until (a := simplify(1/(a-floor(a)), sqrt)) = i end_repeat: return(simplify(-(b/(p-1) + 1/a)/sqrt(-n), sqrt)); end_proc:

CROSSREFS

Cf. A086378, A087947.

Sequence in context: A049860 A010382 A138673 * A010437 A020682 A243702

Adjacent sequences:  A087945 A087946 A087947 * A087949 A087950 A087951

KEYWORD

nonn

AUTHOR

Thomas Baruchel, Sep 07 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 21:32 EDT 2021. Contains 347605 sequences. (Running on oeis4.)