The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140092 G.f. satisfies: A(x) = Series_Reversion[ x/sqrt(1 + 4*A(x)) ] with A(0)=0. 1
 1, 2, 6, 28, 174, 1308, 11300, 108808, 1145078, 12996332, 157580252, 2026874424, 27507762028, 392226116696, 5855551243464, 91263899531280, 1481385005886374, 24989341719984972, 437270678940944556, 7923785627972483672 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA G.f. satisfies: A(x) = x*sqrt(1 + 4*A(A(x))). G.f. satisfies: A(A(x)) = [(A(x)^2 - x^2]/(2*x)^2. a(n)=T(n,1), T(n, m)=m/n*sum(k=1..n-m, sum(i=k..n-m, T(n-m,i)*sum(j=0..i-k, binomial(-k-j+2*i-1,i-1)*(k+j)*2^(k+j)*binomial(k+j-1,k-1))/i*(-1)^(i+k))*binomial(n+k-1, n-1)), n>m, T(n,n)=1.  [Vladimir Kruchinin, May 08 2012] EXAMPLE G.f.: A(x) = x +2*x^2 +6*x^3 + 28*x^4 + 174*x^5 +1308*x^6 +11300*x^7 +... A(A(x)) = x + 4*x^2 + 20*x^3 +124*x^4 + 912*x^5 +7676*x^6 +72064*x^7 +... A(x)^2 = x^2 +4*x^3 + 16*x^4 + 80*x^5 + 496*x^6 +3648*x^7 +30704*x^8 +... PROG (PARI) {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x/sqrt(1+4*A +x*O(x^n)))); polcoeff(A, n))} (Maxima) array(TL, fixnum, 30, 30); T(n, m):=if n=m then 1 else if TL[n, m]=0 then TL[n, m]:m/n*sum(sum(T(n-m, i)*sum(binomial(-k-j+2*i-1, i-1)*(k+j)*2^(k+j)*binomial(k+j-1, k-1), j, 0, i-k)/i*(-1)^(i+k), i, k, n-m)*binomial(n+k-1, n-1), k, 1, n-m) else TL[n, m]; makelist(T(n, 1), n, 1, 15); [Vladimir Kruchinin, May 08 2012] CROSSREFS Cf. A087949. Sequence in context: A156626 A207386 A088501 * A052809 A136631 A002435 Adjacent sequences:  A140089 A140090 A140091 * A140093 A140094 A140095 KEYWORD nonn AUTHOR Paul D. Hanna, May 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 21:32 EDT 2021. Contains 347605 sequences. (Running on oeis4.)