login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277176
Exponential convolution of Catalan numbers and factorial numbers.
3
1, 2, 6, 23, 106, 572, 3564, 25377, 204446, 1844876, 18465556, 203179902, 2438366836, 31699511768, 443795839192, 6656947282725, 106511191881270, 1810690391626380, 32592427526913540, 619256124778620450, 12385122502136529420, 260087572569333384840
OFFSET
0,2
COMMENTS
a(n) = number of permutations of [n+1] in which the first entry does not start a (classical) 1234 pattern. The number of such permutations with first entry i is n!/(n + 1 - i)! C(n + 1 - i) where C(n) is the Catalan number A000108(n). - David Callan, Jun 12 2017
LINKS
FORMULA
E.g.f.: exp(2*x)/(1-x)*(BesselI(0,2*x)-BesselI(1,2*x)).
a(n) = Sum_{i=0..n} binomial(n,i) * C(i) * (n-i)!.
a(n) ~ exp(2) * BesselI(2,2) * n!. - Vaclav Kotesovec, Oct 13 2016
MAPLE
a:= proc(n) option remember; `if`(n<2, n+1,
((n^2+5*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n+1))
end:
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := Sum[Binomial[n, i] CatalanNumber[i] (n-i)!, {i, 0, n}];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 02 2016
STATUS
approved