login
A200404
Number of permutations avoiding the pattern 143-2.
6
1, 2, 6, 23, 107, 582, 3622, 25369, 197523, 1692535, 15829557, 160463512, 1752529064, 20516018396, 256273980368, 3402364791737, 47841014687039, 710242228143271, 11101522062378069, 182234745428876525, 3134424458578405569, 56371116965252450338
OFFSET
1,2
LINKS
Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 1.
Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for vincular patterns, arXiv preprint arXiv:1108.2642 [math.CO], 2011-2012.
FORMULA
a(n) ~ c * d^n * n! * n^alfa, where d = 1/A240885 = 1/(sqrt(2) * InverseErf(sqrt(2/Pi))), alfa = 0.96094544076267076286993824810734... and c = 0.5103992709959036090170192609... - Vaclav Kotesovec, Oct 17 2019
MATHEMATICA
i120[1] = 1; i120[2] = 2; i120[n_] := i120[n] = Sum[s120[n, k], {k, 0, n - 1}]; s120[n_, k_] := s120[n, k] = i120[n - 1] - Sum[(n - 2 - j)*s120[n - 2, j], {j, k + 1, n - 2}]; Table[i120[m], {m, 1, 25}] (* Vaclav Kotesovec, Oct 17 2019 *)
CROSSREFS
Sequence in context: A187761 A277176 A130908 * A000772 A200405 A336071
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 17 2011
EXTENSIONS
a(11)-a(15) from Lars Blomberg, Apr 16 2018
a(16)-a(22) from Vaclav Kotesovec, Oct 17 2019
STATUS
approved