OFFSET
1,2
COMMENTS
Are terms products products of primes of the form 2^i*3^j + 1, A058383, for some nonnegative i and j? This is true for all terms up to 7.6*10^6. 7600320 is divisible by 29, which isn't of the form 2^j*3^i+1. Up to 10^8, all of the terms are divisible by only 16 distinct prime factors. That is: omega(lcm(all terms up to 10^8)) = 16.
Subsequence of A124240.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..510
EXAMPLE
6 is a term because for the primes up to 6, (2, 3 and 5), b^sigma(6) == b^phi(6) == b^numdiv(6) == b^6 (mod 6). This is sufficient to prove for all values b up to 6.
MATHEMATICA
fQ[n_] := Block[{b = 2, s = DivisorSigma[1, n], e = EulerPhi[n], d = DivisorSigma[0, n]}, While[b < n && PowerMod[b, s, n] == PowerMod[b, e, n] == PowerMod[b, d, n] == PowerMod[b, n, n], b = NextPrime@ b]; b >= n]; lst = {1}; k = 2; While[k < 400000, If[ fQ@ k, AppendTo[lst, k]]; k ++]; lst (* Robert G. Wilson v, Nov 04 2016 *)
PROG
(PARI) isk(n, k) = {Mod(k, n)^sigma(n)==Mod(k, n)^n && Mod(k, n)^eulerphi(n)==Mod(k, n)^n && Mod(k, n)^numdiv(n)==Mod(k, n)^n}
is(n) = my(i); forprime(i=2, n, if(isk(n, i)==0, return(0))) ; 1
upto(lim) = my(l=List()); for(n=1, lim, if(is(n), listput(l, n))); l
CROSSREFS
KEYWORD
nonn
AUTHOR
David A. Corneth and Altug Alkan, Oct 02 2016
STATUS
approved