OFFSET
1,2
COMMENTS
Terms are 1, 7*73, 23*31, 73*151, 103*151, 73*601, 89*911, 151*2143, ...
Obviously, there are no primes in this sequence and there are no squares of primes. n=p*q is in the sequence iff 2^(q+2) == 1 mod p and 2^(p+2) == 1 mod q. - Robert Israel, Sep 23 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..32
EXAMPLE
511 is a term because 2^(sigma(511)-511) == 1 (mod 511).
PROG
(PARI) is(n) = Mod(2, n)^(sigma(n)-n)==1;
(PARI) list(lim)=my(v=List([1]), t, s, n); lim\=1; forprime(p=3, sqrtint(lim\3), for(e=2, logint(lim, p), t=p^e; forstep(k=3, lim\t, 2, if(k%p==0, next); s=(t*p-1)/(p-1)*sigma(k); n=t*k; if(Mod(2, n)^(s-n)==1, listput(v, n))))); forprime(p=3, lim\3, forstep(k=3, lim\p, 2, if(k%p==0, next); s=(p+1)*sigma(k); n=p*k; if(Mod(2, n)^(s-n)==1, listput(v, n)))); Set(v) \\ Charles R Greathouse IV, Oct 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Oct 03 2016
EXTENSIONS
a(11)-a(21) from Charles R Greathouse IV, Oct 07 2016
STATUS
approved