login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277172
Numbers n such that 2^(sigma(n)-n) == 1 (mod n).
1
1, 511, 713, 11023, 15553, 43873, 81079, 323593, 27923663, 125093857, 466572127, 1108378657, 2214217703, 2871002911, 3501195817, 4107455887, 4609840831, 5066719081, 5488711231, 6331291231, 9396536737
OFFSET
1,2
COMMENTS
Terms are 1, 7*73, 23*31, 73*151, 103*151, 73*601, 89*911, 151*2143, ...
Obviously, there are no primes in this sequence and there are no squares of primes. n=p*q is in the sequence iff 2^(q+2) == 1 mod p and 2^(p+2) == 1 mod q. - Robert Israel, Sep 23 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..32
EXAMPLE
511 is a term because 2^(sigma(511)-511) == 1 (mod 511).
PROG
(PARI) is(n) = Mod(2, n)^(sigma(n)-n)==1;
(PARI) list(lim)=my(v=List([1]), t, s, n); lim\=1; forprime(p=3, sqrtint(lim\3), for(e=2, logint(lim, p), t=p^e; forstep(k=3, lim\t, 2, if(k%p==0, next); s=(t*p-1)/(p-1)*sigma(k); n=t*k; if(Mod(2, n)^(s-n)==1, listput(v, n))))); forprime(p=3, lim\3, forstep(k=3, lim\p, 2, if(k%p==0, next); s=(p+1)*sigma(k); n=p*k; if(Mod(2, n)^(s-n)==1, listput(v, n)))); Set(v) \\ Charles R Greathouse IV, Oct 04 2016
CROSSREFS
Sequence in context: A242218 A051985 A103206 * A023691 A045118 A043451
KEYWORD
nonn
AUTHOR
Altug Alkan, Oct 03 2016
EXTENSIONS
a(11)-a(21) from Charles R Greathouse IV, Oct 07 2016
STATUS
approved