login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277169
Product of squares of proper divisors of n.
1
1, 1, 1, 4, 1, 36, 1, 64, 9, 100, 1, 20736, 1, 196, 225, 4096, 1, 104976, 1, 160000, 441, 484, 1, 191102976, 25, 676, 729, 614656, 1, 729000000, 1, 1048576, 1089, 1156, 1225, 78364164096, 1, 1444, 1521, 4096000000, 1, 5489031744, 1, 3748096, 4100625, 2116, 1, 28179280429056, 49, 6250000
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Divisor Product
Eric Weisstein's World of Mathematics, Proper divisors
FORMULA
a(n) = n^(sigma_0(n)-2).
a(n) = n^A000005(n)/A000290(n).
a(n) = A000290(A007956(n))/A000290(n).
a(n) = A000290(A007955(n)/n)/A000290(n).
a(n) = A062758(n)/A000290(n).
a(n) = 1 if n is prime or n = 1 (A008578).
a(n) = n if n is square of prime (A001248).
a(n) = n^2 if n is multiplicatively perfect number (A007422).
EXAMPLE
a(6) = 36 because 6 has 3 proper divisors {1,2,3} and 1^2*2^2*3^2 = 36.
MAPLE
seq(n^(numtheory:-tau(n)-2), n=1..50); # Robert Israel, Nov 13 2016
MATHEMATICA
Table[n^(DivisorSigma[0, n] - 2), {n, 1, 50}]
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Oct 19 2016
STATUS
approved