Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 14 2016 00:27:25
%S 1,1,1,4,1,36,1,64,9,100,1,20736,1,196,225,4096,1,104976,1,160000,441,
%T 484,1,191102976,25,676,729,614656,1,729000000,1,1048576,1089,1156,
%U 1225,78364164096,1,1444,1521,4096000000,1,5489031744,1,3748096,4100625,2116,1,28179280429056,49,6250000
%N Product of squares of proper divisors of n.
%H Robert Israel, <a href="/A277169/b277169.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DivisorProduct.html">Divisor Product</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ProperDivisor.html">Proper divisors</a>
%F a(n) = n^(sigma_0(n)-2).
%F a(n) = n^A000005(n)/A000290(n).
%F a(n) = A000290(A007956(n))/A000290(n).
%F a(n) = A000290(A007955(n)/n)/A000290(n).
%F a(n) = A062758(n)/A000290(n).
%F a(n) = 1 if n is prime or n = 1 (A008578).
%F a(n) = n if n is square of prime (A001248).
%F a(n) = n^2 if n is multiplicatively perfect number (A007422).
%e a(6) = 36 because 6 has 3 proper divisors {1,2,3} and 1^2*2^2*3^2 = 36.
%p seq(n^(numtheory:-tau(n)-2), n=1..50); # _Robert Israel_, Nov 13 2016
%t Table[n^(DivisorSigma[0, n] - 2), {n, 1, 50}]
%Y Cf. A000290, A001248, A007422, A007955, A007956, A008578, A062758.
%K nonn,easy
%O 1,4
%A _Ilya Gutkovskiy_, Oct 19 2016