login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007956
Product of the proper divisors of n.
44
1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1, 13824, 5, 26, 27, 784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39, 64000, 1, 74088, 1, 1936, 2025, 46, 1, 5308416, 7, 2500, 51, 2704, 1, 157464, 55, 175616, 57, 58, 1, 777600000, 1, 62, 3969, 32768, 65
OFFSET
1,4
COMMENTS
From Bernard Schott, Feb 01 2019: (Start)
a(n) = 1 iff n = 1 or n is prime.
a(n) = n when n > 1 iff n has exactly four divisors, equally, iff n is either the cube of a prime or the product of two different primes, so iff n belongs to A030513 (very nice proof in Sierpiński).
a(p^3) = 1 * p * p^2 = p^3; a(p*q) = 1 * p * q = p*q.
As a(1) = 1, {1} Union A030513 = A007422, fixed points of this sequence. (End)
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Zhu Weiyi, On the divisor product sequences, Smarandache Notions J., Vol. 14 (2004), pp. 144-146.
FORMULA
a(n) = A007955(n)/n = n^(A000005(n)/2-1) = sqrt(n^(number of factors of n other than 1 and n)).
a(n) = Product_{k=1..A000005(n)-1} A027751(n,k). - Reinhard Zumkeller, Feb 04 2013
a(n) = A240694(n, A000005(n)-1) for n > 1. - Reinhard Zumkeller, Apr 10 2014
Sum_{k=1..n} 1/a(k) ~ pi(n) + log(log(n))^2 + c_1*log(log(n)) + c_2 + O(log(log(n))/log(n)), where pi(n) = A000720(n) and c_1 and c_2 are constants (Weiyi, 2004; Sandor and Crstici, 2004). - Amiram Eldar, Oct 29 2022
EXAMPLE
a(18) = 1 * 2 * 3 * 6 * 9 = 324. - Bernard Schott, Jan 31 2019
MAPLE
A007956 := n -> mul(i, i=op(numtheory[divisors](n) minus {1, n}));
seq(A007956(i), i=1..79); # Peter Luschny, Mar 22 2011
MATHEMATICA
Table[Times@@Most[Divisors[n]], {n, 65}] (* Alonso del Arte, Apr 18 2011 *)
a[n_] := n^(DivisorSigma[0, n]/2 - 1); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 07 2013 *)
PROG
(PARI) A007956(n) = local(a); a=1; fordiv(n, d, a=a*d); a/n \\ Michael B. Porter, Dec 01 2009
(PARI) a(n)=my(k); if(issquare(n, &k), k^(numdiv(n)-2), n^(numdiv(n)/2-1)) \\ Charles R Greathouse IV, Oct 15 2015
(Haskell)
a007956 = product . a027751_row
-- Reinhard Zumkeller, Feb 04 2013, Nov 02 2011
(Python)
from math import isqrt
from sympy import divisor_count
def A007956(n): return isqrt(n)**(d-2) if (d:=divisor_count(n))&1 else n**((d>>1)-1) # Chai Wah Wu, Jun 18 2023
CROSSREFS
Cf. A007422 (fixed points). A030513 (subsequence).
Cf. A001065 (sums of proper divisors).
Sequence in context: A324193 A364829 A264859 * A378183 A107754 A181569
KEYWORD
nonn,easy,nice
AUTHOR
R. Muller
EXTENSIONS
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
STATUS
approved