login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066729
a(n) = Product_{d|n, d<n} d if n is composite, n otherwise.
3
1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 144, 13, 14, 15, 64, 17, 324, 19, 400, 21, 22, 23, 13824, 5, 26, 27, 784, 29, 27000, 31, 1024, 33, 34, 35, 279936, 37, 38, 39, 64000, 41, 74088, 43, 1936, 2025, 46, 47, 5308416, 7, 2500, 51, 2704, 53, 157464, 55, 175616, 57
OFFSET
1,2
COMMENTS
a(n) = n if n is prime, otherwise a(n) = A007956(n);
a(A084116(n)) = A084116(n).
LINKS
FORMULA
a(n) = n^c(n) * ( Product_{d|n, d<n} d )^(1-c(n)), where c is the prime characteristic (A010051). - Wesley Ivan Hurt, Jan 10 2021
MATHEMATICA
a[1] = 1; a[n_ /; PrimeQ[n]] := n; a[n_] := Times @@ Most[Divisors[n]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 28 2015 *)
Table[If[CompositeQ[n], Times@@Most[Divisors[n]], n], {n, 60}] (* Harvey P. Dale, Jun 24 2016 *)
PROG
(Haskell)
a066729 n = if pds == [1] then n else product pds
where pds = a027751_row n
-- Reinhard Zumkeller, Jul 31 2014
(PARI) a(n) = my(pd = vecprod(divisors(n))); if (isprime(n), pd, pd/n); \\ Michel Marcus, Jan 09 2021
KEYWORD
nonn,nice
AUTHOR
Reinhard Zumkeller, Jan 15 2002
EXTENSIONS
Revised and data corrected by Reinhard Zumkeller, Jul 31 2014
STATUS
approved