login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066726
Numbers n such that binomial(2n, n) - 1 is prime.
16
2, 3, 5, 9, 15, 29, 43, 51, 113, 184, 213, 222, 267, 279, 369, 402, 441, 603, 812, 839, 902, 1422, 1542, 1824, 2983, 3065, 3911, 3958, 4192, 4587, 4865, 5543, 5837, 7902, 9299, 9722, 10412, 10648, 11498, 12803, 14428, 15876, 20173, 26311, 38927, 52210, 54189, 59757, 60454, 72094, 76899, 85033, 91059, 91059
OFFSET
1,1
COMMENTS
I.e., numbers n such that (2*n)!/(n!)^2-1 is prime. - Hugo Pfoertner, Sep 25 2005
The next term is > 30000. - Vaclav Kotesovec, May 03 2021
a(55) > 100000. - Robert Price, Jul 02 2024
MATHEMATICA
Do[ If[ PrimeQ[ Binomial[2n, n] - 1], Print[n]], {n, 1, 2000} ]
PROG
(PARI) is(n)=isprime(binomial(2*n, n)-1) \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
Cf. A092751 = primes of the form (2*n)!/(n!)^2-1, A112853 = (2*n)!/n!-1 is prime, A112855 = (2*n)!/n!+1 is prime, A066699 = (2*n)!/(n!)^2+1 is prime, A112861 = (2*n)!/(2*(n!)^2)-1 is prime, A112863 = (2*n)!/(2*(n!)^2)+1 is prime. - Hugo Pfoertner, Sep 25 2005
Sequence in context: A167510 A351359 A191701 * A124642 A370641 A269153
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 15 2002
EXTENSIONS
More terms from Ed Pegg Jr, Sep 10 2003
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
a(43)-a(44) from Vaclav Kotesovec, May 03 2021
a(45)-a(54) from Robert Price, Jul 02 2024
STATUS
approved