login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112861
Numbers k such that (2*k)!/(2*(k!)^2) - 1 is prime.
6
2, 6, 10, 21, 45, 63, 306, 404, 437, 471, 646, 1174, 1192, 1334, 1975, 2397, 2410, 4305, 6111, 7852, 9488, 11120, 13304, 14408, 16075, 16238, 21188, 21659, 22025, 28673, 30793, 32178, 35278, 40049, 46516, 47836, 52157, 54531, 59897, 60275, 63362, 76139, 84219, 89024, 90783, 91605, 96761
OFFSET
1,1
COMMENTS
a(48) > 100000. - Robert Price, Jul 25 2024
MATHEMATICA
Select[Range[10000], PrimeQ[(2 #)! / (2 (#!)^2) - 1 ] &] (* Vincenzo Librandi, Apr 10 2015 *)
PROG
(Magma) [n: n in [1..700] | IsPrime(Factorial(2*n) div (2*Factorial(n)^2)-1)]; // Vincenzo Librandi, Apr 10 2015
CROSSREFS
Cf. A001700(n-1) = (2*n)!/(2*(n!)^2); A112862: primes of the form (2*n)!/(2*(n!)^2)-1; A112853: (2*n)!/n!-1 is prime; A112855: (2*n)!/n!+1 is prime; A066726: (2*n)!/(n!)^2-1 is prime; A066699: (2*n)!/(n!)^2+1 is prime; A112863: (2*n)!/(2*(n!)^2)+1 is prime.
Sequence in context: A297185 A372452 A304991 * A180230 A186296 A140775
KEYWORD
hard,nonn
AUTHOR
Hugo Pfoertner, Sep 30 2005
EXTENSIONS
a(22)-a(26) from Vaclav Kotesovec, May 02 2021
a(27)-a(47) from Robert Price, Jul 25 2024
STATUS
approved