|
|
A269153
|
|
Expansion of Product_{k>=1} ((1 - k*x^k) / (1 - 2*x^k)).
|
|
4
|
|
|
1, 1, 2, 3, 5, 9, 15, 33, 62, 130, 264, 554, 1081, 2237, 4483, 8952, 17933, 35921, 71755, 143502, 286713, 573198, 1146540, 2292277, 4584087, 9166802, 18334880, 36668210, 73336840, 146672469, 293348402, 586695560, 1173398119, 2346805311, 4693617598, 9387229673
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..3300
|
|
FORMULA
|
a(n) ~ c * 2^n, where c = Product_{k>=1} (2^k - k)/(2^k - 1) = 0.27320499481666294779155052256744055231134605935215258251663905...
|
|
MATHEMATICA
|
nmax = 50; CoefficientList[Series[Product[(1-k*x^k)/(1-2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
CROSSREFS
|
Cf. A070933, A267005, A269144.
Sequence in context: A191701 A066726 A124642 * A232866 A011826 A119968
Adjacent sequences: A269150 A269151 A269152 * A269154 A269155 A269156
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Feb 20 2016
|
|
STATUS
|
approved
|
|
|
|