|
|
A269144
|
|
Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - 2*x^k)).
|
|
4
|
|
|
1, 3, 10, 29, 77, 195, 475, 1115, 2546, 5706, 12528, 27106, 57893, 122299, 255995, 531816, 1097377, 2252151, 4600835, 9362334, 18990645, 38418370, 77548880, 156251955, 314363615, 631703790, 1268148900, 2543812090, 5099469848, 10217529291, 20464112218
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Convolution of A022629 and A070933.
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..3290
|
|
FORMULA
|
a(n) ~ c * 2^n, where c = Product_{k>=1} (2^k + k)/(2^k - 1) = 19.14883592186082265751161402244824703642181055238186925199088...
|
|
MATHEMATICA
|
nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1-2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
CROSSREFS
|
Cf. A022629, A070933, A267004, A269153.
Sequence in context: A130218 A114958 A048493 * A096140 A307262 A291393
Adjacent sequences: A269141 A269142 A269143 * A269145 A269146 A269147
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Feb 20 2016
|
|
STATUS
|
approved
|
|
|
|